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SI 1. Description and comparison of the of Al Wusta-1 phalanx. 52!

 53!

1.1!Pathology 54!

 55!

The Al Wusta-1 (AW-1) phalanx shows evidence of pathological changes to the bone 56!

surface. Additional pathological bone formation affects the proximal half of the shaft, 57!

covering approximately one quarter of the dorsal surface, measuring 11.9 mm proximo-58!

distally and 5.9 mm radio-ulnarly, and projecting approximately 2.5 mm from inferred 59!

‘normal’ bone surface. Micro-CT scanning confirms that the additional bone is continuous 60!

with the cortical bone of the shaft, but there is no evidence of a fracture or other trauma (Fig. 61!

2B, C). Its irregular, angular morphology suggests that this additional bone may be due to the 62!

ossification of the central slip of the extensor digitorum muscle (i.e., a “bony spur” or 63!

enthesophyte), which attaches to the intermediate phalanx in this region. The unusual, 64!

relatively circular cross-sectional shape of AW-1 may also reflect these pathological changes. 65!

 66!

1.2 Linear metric analysis of the Al Wusta-1 intermediate phalanx 67!

 68!

Linear measurements of AW-1 are presented in Supplementary Table 1. We conducted an 69!

analysis of nine linear measurements of intermediate phalanx shape across a sample of extant 70!

primates and fossil hominins (Supplementary Table S2). For extant non-human primates, 71!

intermediate phalanges (IPs) from all rays (2-5) of one side (either left or right) were included 72!

as it is possible that all non-human primate IPs may show similar morphology to human 73!

IPs1,2. However, human and fossil hominin IPs from the fifth ray (IP5) show a distinctive, 74!

asymmetrical shape that is not present in AW-1 and thus all H. sapiens IP5 specimens and 75!

potential IP5 fossil hominin specimens were excluded from the analysis. Although data from 76!
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multiple IPs from a single individual are not independent, without knowing the exact ray to 77!

which AW-1 belongs, nor the exact ray or number of individuals associated with several of 78!

the comparative fossil hominin intermediate phalanges, it is more conservative to include the 79!

range of morphological variation across multiple rays. 80!

 81!

Linear measurements included the maximum proximo-distal length of the phalanx (i.e. total 82!

length), maximum dorso-palmar height of the proximal base, the dorso-palmar height and 83!

radio-ulnar breadth of the proximal articular facet, radio-ulnar breadth of the proximal shaft, 84!

and dorso-palmar height and radio-ulnar breadth of the midshaft and distal shaft, all of which 85!

could be confidently measured on AW-1.  86!

 87!

All metrics were assessed and compared as a ratio of the total length of the phalanx. 88!

Comparisons across extant taxa, Neandertals and H. sapiens (i.e. all taxonomic groups with 89!

large enough sample sizes) were evaluated using Mann-Whitney U pairwise comparisons 90!

with a Bonferroni correction for multiple comparisons (Supplementary Table 3). Relative 91!

comparisons of AW-1 and other fossil specimens were visually assessed via box-and-whisker 92!

plots (Supplementary Figure 1). 93!

 94!

Comparative analyses reveal that there is substantial overlap across most taxa in all shape 95!

ratios. For any given shape ratio, AW-1 falls within the range of variation of cercopiths, 96!

Gorilla, A. afarensis, A. sediba, Neanderthals and H. sapiens. However, AW-1 is most 97!

similar to the median value or falls within the range of variation of recent and early H. 98!

sapiens for all shape ratios (Supplementary Figure 1), confirming its affiliation with H. 99!

sapiens revealed by the 3D geometric morphometric analyses (see main text and below). 100!

More specifically, AW-1 is very similar to the H. sapiens median value in the relative 101!
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radioulnar breadth of the proximal base and the proximal shaft, and the dorso-palmar height 102!

at midshaft. AW-1 falls within the lower range of variation of H. sapiens, and outside or at 103!

the extreme of the Neanderthal range of variation, in its dorso-palmar height and radioulnar 104!

breadth proximal facet, and its radioulnar breadth at midshaft and the distal shaft. 105!

 106!

Note that published values for the controversial H. sapiens specimen Cueva Victoria CV-0 107!

specimen are included in the proximal base breadth and midshaft breadth and height shape 108!

ratios (Supplementary Figure 1). This specimen is always the most extreme outlier in the 109!

box-and-whisker plots, and falls in the direction of the cercopithecid median value, 110!

suggesting that this specimen is indeed that of Theropithecus, and not H. sapiens, supporting 111!

Martínez-Navarro and colleagues1,2. 112!

 113!

1.3 Geometric morphometric comparison of non-human primate, fossil hominin and Al 114!

Wusta-1 phalanges 115!

 116!

To provide a broader interpretive context for AW-1, we provide a principal components 117!

analysis of geometric morphometric landmark data (Supplementary Table 4, Supplementary 118!

Figure 2) on a sample of phalanges from a range of primates including fossil hominins 119!

(Supplementary Table 5).  In Figure 3 (main text) and Supplementary Figure 3, PC1 and PC2 120!

together account for 61% of group variance in shape. AW-1 is separated on these two shape 121!

vectors from the non-human primates and most of the Neanderthals by a shorter, wider 122!

diaphysis and palmarly flatter proximal base. It shares a proximal head that is higher to the 123!

right (dorsal view) with H. sapiens, although this may be a function of the proportion of left 124!

and right sides in each sample. AW-1 falls closest to the Holocene and early H. sapiens and is 125!

well differentiated from all non-human primates. This is shown by the Procrustes distances 126!
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from AW-1 to the mean shapes of each taxonomic group (Figure 3, Supplementary Figure 3 127!

and Supplementary Table 6). 128!

 129!

1.4 Geometric morphometric analysis restricted to AW-1 and hominin phalanges of 130!

known side and digit numbers 131!

 132!
 133!

Details of the sample are given in Supplementary Table 7. Methods and Results for pooled 134!

left and right hands are given in the main text (see Figure 4 and also Supplementary Tables 8-135!

9.)  136!

 137!

1.4.1 Left and right 2nd, 3rd and 4th intermediate phalanges separated. 138!

 139!

The results showing AW-1 compared separately to right and to left phalanges 140!

(Supplementary Figure 4, Supplementary Tables 10-11) are very similar to the pooled sample 141!

(see main text, Figure 4 and Supplementary Tables 8-9), such that AW-1 is closest to 142!

Holocene H. sapiens 3rd rays for both right and left hand, although Pleistocene H. sapiens 143!

configurations fall almost completely inside the scatter for the Holocene H. sapiens sample. 144!

AW-1 is most distinct from the Neanderthal phalanges of both the left and right hands. The 145!

greatest separation between AW-1 and other groups is described by PC2 for both the right 146!

and left phalanges. These vectors describe the shape difference between shorter and stockier 147!

vs. longer and narrower configurations. AW-1 is taller and narrower (in all directions: dorso-148!

palmarly, proximo-distally and radio-ulnarly) than shapes towards the other end of the PC2s, 149!

which describe most of the Neanderthal phalanges. Again, these analyses suggest that AW-1 150!

is likely to be a 3rd intermediate phalanx from a H. sapiens individual. 151!

 152!
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1.5 Cross sectional geometry analyses 153!

 154!

1.5.1 Materials and Methods 155!

 156!

Cross-sectional geometry (CSG) of bones examines the amount and distribution of cortical 157!

bone in the cross section, which reflects primarily the impacts of body size, body shape, and 158!

activity on the skeleton3-6. CSG of AW-1 and the comparative 2nd-4th phalanges 159!

(Supplementary Table S7) were calculated in ImageJ7 using the BoneJ plugin8 and using the 160!

same microCT data as for the GMM analyses. Slices at 54% of total AW-1 phalanx length 161!

(measured from the proximal end) were analysed to avoid the influence on cross-sectional 162!

properties of the pathological bone formation on the shaft. Total area (TA) of the cross 163!

section was calculated by filling the medullary cavity with the 'fill holes' function of ImageJ 164!

and rerunning the slice through BoneJ. Percent cortical area (%CA) reflecting cortical bone 165!

thickness was calculated as 100*cortical area/TA.  J, a measure of torsional and twice 166!

average bending rigidity, was calculated as the sum of maximum and minimum bending 167!

rigidities (Imax and Imin respectively)9. 168!

 169!

GMM analyses suggest that AW-1 is a 3rd intermediate phalanx, but plots were generated for 170!

each of manual rays 2-4 in case these analyses suggested otherwise. Where left and right 171!

sides were present for the same ray of the same individual, the mean was used. 172!

 173!

As body size and activity are both important determinants of bone cross-sectional properties 174!

(see above), CA and J were plotted against bone length to examine whether the cross-175!

sectional properties relative to body size could differentiate Neanderthal, Pleistocene H. 176!

sapiens and Holocene H. sapiens and thus be informative regarding the taxonomic affiliation 177!
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of AW-1. However, it must be noted that CSG of the phalanges, unlike the limb long bones4,8, 178!

is not well documented in the literature and the relative importance of body size, activity and 179!

taxonomy remain to be investigated in detail. The relationship between Imax and Imax, which 180!

reflects the circularity of bone distribution was also examined by plotting Imax against Imin. 181!

Plots were generated using IBM SPSS Statistics v. 23. 182!

 183!

 184!

1.5.2 Results 185!

 186!

In general, AW-1 lies outside of the range of CSG for intermediate phalanges from ray 2, 187!

well within the range for ray 3, and at the upper end of the range for ray 4 (Supplementary 188!

Figure 5), supporting the interpretation that AW-1  is most likely to be a 3rd intermediate 189!

phalanx.  For all cross-sectional properties, Holocene H. sapiens show a large range of 190!

variation and the small sample of Neanderthals and Pleistocene H. sapiens do not appear well 191!

differentiated from the Holocene specimens. While generally within the range of the 192!

comparative specimens, AW-1 falls just outside the range of the sample for Imax relative to 193!

Imin, with a low ratio indicating an unusually circular cross-section. In the long bones of the 194!

lower limb, more circular shafts indicate similar loading in multiple directions10-11, but its 195!

precise interpretation for manual phalanges remains to be explored.   196!

 197!

Further work to document the range of variation in phalanx CSG and its relationship to 198!

ancestry and behaviour patterns would be required to further interpret the cross-sectional 199!

circularity of the AW-1. A relationship between this high level of circularity and the 200!

pathological bone formation on the dorsal surface of AW-1’s shaft cannot be excluded, since 201!

the shaft could be expanded in a dorso-palmar direction even where external appearance is 202!
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normal, which would serve to lower the Imax/Imin ratio.  Alternatively, a generally high level of 203!

loading might account for both the enthesophyte and more circular cross-section of the shaft. 204!

 205!

 206!

 207!

 208!

 209!

 210!

 211!

 212!

 213!

 214!

 215!

 216!

 217!

 218!

 219!

 220!

 221!

 222!

 223!

 224!

 225!

 226!
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SI 2. U-series and combined US-ESR dating of fossil bone and teeth from 227!

Al Wusta. 228!

 229!

2.1 Materials and Methods 230!

2.1.1 Material 231!

The human phalanx (AW-1, lab code for U-series = 3675) and a hippopotamus tooth 232!

fragment (lab code WU1601) were collected from Trench 1. The external dose rate 233!

calculations are based on the data from OSL sample PD40 (Supplementary Table 16), which 234!

was collected at the equivalent position within unit 3a. 235!

 236!

2.1.2 U-series analysis 237!

U-series analysis of bones can be used to reconstruct U-uptake phases. Modern bones are 238!

virtually U free. All the uranium that is measured in fossil samples migrated into the skeletal 239!

tissues after these were buried. However, it is difficult to establish whether this U-uptake was 240!

a single stage process that occurred a short time after burial, or whether the U-accumulation 241!

was a complex, multistage process that may have commenced a significant time after the 242!

original burial12. In any case, as long as there is no indication for uranium leaching, the 243!

calculated U-series age results have to be regarded as minimum age estimates with respect to 244!

the age of the fossil.  245!

 246!

The experimental setup for the U-series analysis of the AW-1 phalanx was previously 247!

described in Grün and colleagues12. Laser ablation (LA) was used to drill a number of holes 248!

the finger bone following the approach of Benson et al.13. After a cleaning run with the laser 249!
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set at a diameter of 460 μm, seven holes were drilled for 1000 s (Supplementary Figure 6A) 250!

with the laser set at 330 μm. The isotopic data streams (Supplementary Figure 6B) were 251!

converted into 230Th/234U and 234U/238U activity ratios and apparent Th/U age estimates 252!

(Supplementary Figure 6C) and subsequently binned into 30 successive sections (each 253!

containing 33 cycles) for the calculation of average isotopic ratios and ages (Supplementary 254!

Figure 6D; Supplementary Table 12). 255!

 256!

A similar experimental setup and methodology were employed for the LA U-series analysis 257!

of tooth sample WU1601 (Supplementary Figure 8). Individual closed system U-series age 258!

estimates were calculated for each ablation spot and the whole analytical data of the enamel 259!

and dentine sections were integrated to provide the data input for the ESR age calculations 260!

(Supplementary Table 13). 261!

 262!

2.1.3 ESR dose evaluation 263!

 264!

Enamel was collected from tooth WU1601 and powdered <200 µm. The sample was then 265!

divided into 11 aliquots and gamma irradiated with a Gammacell-1000 Cs-137 source to the 266!

following doses: 0, 49, 97, 146, 243, 340, 486, 873, 1457, 2430 and 3397 Gy. ESR 267!

measurements were carried out at room temperature with an EMXmicro 6/1 Bruker ESR 268!

spectrometer coupled to a standard rectangular ER 4102ST cavity. The following procedure 269!

was used to minimise the analytical uncertainties: (i) all aliquots of a given sample were 270!

carefully weighed into their corresponding tubes and a variation of <1 mg was tolerated from 271!

one aliquot to another; (ii) ESR measurements were performed using a Teflon sample tube 272!

holder inserted from the bottom of the cavity to ensure that the vertical position of the tubes 273!
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remains exactly the same for all aliquots. The following acquisition parameters were used: 3-274!

30 scans (depending on the sample and aliquot measured), 1 mW microwave power, 1024 275!

points resolution, 15 mT sweep width, 100 kHz modulation frequency, 0.1 mT modulation 276!

amplitude, 20 ms conversion time and 5 ms time constant. 277!

 278!

ESR intensities were extracted from T1-B2 peak-to-peak amplitudes of the ESR signal of 279!

enamel14, and then corrected by the corresponding number of scans and aliquot mass. Fitting 280!

procedures were carried out with the Microcal OriginPro 9.5 software using a Levenberg-281!

Marquardt algorithm by chi-square minimization. DE values were obtained by fitting a single 282!

saturating exponential (SSE) function through the experimental data, with data weighting by 283!

the inverse of the squared ESR intensity (1/I2)15. 284!

 285!

The sample was measured three times on different days in order to evaluate the precision in 286!

measurement and DE. Only small variation of between 1.5% and 2.7% (1-σ) were found over 287!

the three days, respectively. The final DE value was calculated by pooling all the ESR 288!

intensities derived from the three repeated measurements in a single dose response curve 289!

(DRC)16.  In order to avoid DE overestimation caused by the use of the SSE function, an 290!

appropriate maximum irradiation dose (Dmax) was selected in accordance with the 291!

recommendations by Duval and Grün17: given the magnitude of the DE value (~100 Gy), 292!

Dmax/DE should be between 5 and 10, and final dose evaluation were thus done with Dmax=873 293!

Gy (Dmax/DE =9). The final DRC is shown in Supplementary Figure 9. 294!

 295!

2.1.4 Dose rate evaluation and US-ESR age calculation 296!
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For the dose rate calculations, the following parameters were used: an alpha efficiency of 297!

0.13 ± 0.0218, Monte-Carlo beta attenuation factors19, recently published dose-rate conversion 298!

factors20. For the calculation of the external sediment dose rate, the data of OSL sample PD40 299!

(Supplementary Table 16) were used. The total external dose rate of 438 ± 27 μGy/a consists 300!

of 254 ± 25 μGy/a cosmic dose rate (for the actual depth of 25 cm below surface), 180±10 301!

μGy/a external gamma dose rate, plus the external beta dose rate was corrected for the tooth 302!

configuration, resulting in 4 μGy/a.  303!

 304!

Combined US-ESR ages were calculated with DATA21 using the US model defined by Grün 305!

et al22. Further details about this dating method applied to fossil teeth may be found in 306!

Duval23. The other details of the age result of  103+10/-9 ka are shown in Supplementary 307!

Table 14. 308!

 309!

2.2 Results and discussion 310!

 311!

2.2.1 U-series dating of the Al Wusta-1 phalanx 312!

 313!

Some scans show elevated 232Th levels (see Supplementary Figure 6B, around cycle 250), 314!

which is the result of probing some pores that may be filled with detrital material. However, 315!

all 238U/232Th elemental ratios are well above 50. Supplementary Figure 6E shows that the 316!

calculated ages of the cycles with lower U/Th ratios are not affected by detrital 230Th, which 317!

would systematically increase the results. 318!
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All age calculations are based on closed system assumptions, they are thus apparent age 319!

estimates. U/Th ages were calculated using the Isoplot 3.75 Excel add-on24. Note that this 320!

program does not calculate asymmetric errors. All reported errors are 2-σ. We did not use the 321!

diffusion-adsorption decay (DAD) model of Sambridge and colleagues25 as there is evidence 322!

of at least two discrete U-uptake phases. 323!

 324!

All data steams have in common that the outer domains yield younger lower apparent ages 325!

than those further inside the bone ( Supplementary Figure 7A). This is clearly associated with 326!

higher U concentrations (Supplementary Figure 7B and C). This indicates a second discrete 327!

phase of U-accumulation, which overprinted the original isotopic signature. The more U was 328!

taken up at that later phase, the younger becomes the apparent U-series age. For each of the 329!

holes, the apparent age plateaus after an initial increase. These age plateaux systematically 330!

increase from Hole 1 to Hole 7 (see Supplementary Figure 7A). Interestingly, there is a 331!

reverse trend with older plateau ages associated with slightly higher U-concentrations 332!

(Supplementary Figure 7D). This is could be related to a process where the domains, which 333!

had accumulated more U during an initial uptake phase, were relatively less affected by any 334!

subsequent U-migration processes.  335!

 336!

To conclude, the age plateaux of hole #7 of 87.6 ± 2.5 ka represents the minimum age of the 337!

finger bone. The true age of the bone may be older because (i), the age plateaux of holes #1 338!

to 6 are affected by later U-uptake phases, and it is not possible to ascertain whether the age 339!

plateau of hole #7 was not affected; (ii), the observed, complex U-migration processes may 340!

have commenced a considerable time after the initial burial. 341!

 342!
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2.2.2 Combined US-ESR dating of the fossil tooth 343!

 344!

Apparent U-series age results obtained for the dental tissues are close to those obtained in the 345!

human phalanx: 83.5 ±8.1 ka in the enamel and 65.0 ± 2.1 ka in dentine. These results suggest 346!

that the tooth sample is at least 83 ka old.  347!

 348!

The combined US-ESR age calculation yields a result of 103+10/-96 ka. This ESR result 349!

agrees with OSL sample PD40 (98.6 ± 7 ka) within error.  350!

 351!

 352!

 353!

 354!

 355!

 356!

 357!

 358!

 359!

 360!

 361!

 362!

 363!

 364!

 365!

 366!



! 16!

SI 3: Optically stimulated luminescence (OSL) dating of Al Wusta 367!

 368!

3.1 Sample collection and preparation  369!

 370!

Trenches were dug through the marl beds into the underlying aeolian sand (Unit 1) at Al 371!

Wusta. Three samples (PD15, PD17 and PD41, Supplementary Figure 13) were collected 372!

from Unit 1 sands underlying the southern marl outcrop, upon which the AW-1 phalanx and 373!

the majority of the animal fossils were found. A fourth sample (PD40, Supplementary Figure 374!

13) was taken from Unit 3. PD40 and PD41 were taken from the same trench. OSL samples 375!

were collected by hammering opaque tubes into cleaned section faces. In the laboratory, 376!

quartz was extracted from the portion of each sample which had not been exposed to 377!

sunlight. Samples were initially wet-sieved to isolate the 212-180 µm size fraction, and 378!

carbonates and organic matter were subsequently removed using 1M HCl and H2O2 379!

respectively. The samples were then re-sieved at 180 µm and quartz was extracted from the 380!

>180 µm fraction using density separations at 2.62 and 2.70 g/cm3 and a subsequent HF acid 381!

etch (23M HF for 60 min followed by a 10M HCl rinse). Since Nefud quartz samples are 382!

prone to feldspar contamination, an additional one week H2SiF6 treatment followed by an 383!

HCl rinse was also performed. Etched samples were re-sieved at 150 µm, to remove partially 384!

dissolved grains, and stored in opaque containers prior to measurement. 385!

 386!

3.2 Luminescence measurements 387!

 388!

3.2.1 Equipment 389!

All OSL measurements presented here were carried out using a Risø TL/OSL-DA-15 390!

automated dating system26, fitted with a single-grain OSL attachment27,28. Optical stimulation 391!
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of single-grains used a 10 mW Nd: YVO4 solid-state diode-pumped green laser (532 nm) 392!

focussed to yield a nominal power density of 50 W/cm2, following26. All infra-red (IR) 393!

stimulation was carried out using an IR (870 nm) laser diode array yielding a power density 394!

of 132 mW/cm2. OSL passed through 7.5 mm of Hoya U-340 filter and was detected using an 395!

Electron Tubes Ltd 9235QB15 photomultiplier tube. Irradiation was carried out using a 40 396!

mCi 90Sr/90Y beta source giving ~6 Gy/min. This source is calibrated relative to the National 397!

Physical Laboratory, Teddington 60Co γ-source (Hotspot 80029). Due to the spatial 398!

inhomogeneity of beta emitters across the active face of our 90Sr/90Y beta source, it was 399!

necessary to calibrate the dose rate to each individual grain position on a single-grain disc30 400!

using the method of Armitage and colleagues31. 401!

 402!

3.2.2 Single-grain measurement and analysis 403!

 404!

Measurements were made on 2800-3600 individual quartz grains per sample (Supplementary 405!

Table 15), using the single-aliquot regenerative-dose (SAR) method32, to estimate the 406!

equivalent dose (De). Since optimum measurement conditions vary between samples32,33, 407!

single-grain dose recovery tests34,35 were performed on two of the four samples (PD15 and 408!

PD17) using a known dose of ~50 Gy. A preheating regime of 260 °C held for 10 seconds 409!

prior to measurement of the natural/regenerated dose, and 220 °C held for 10 seconds prior to 410!

measurement of the test dose, yielded dose recovery ratios (measured dose/known dose) of 411!

1.01 ± 0.03 for both samples and was adopted for subsequent De measurements. Optical 412!

stimulation was carried out at 125 °C for 2 s using the green laser. The OSL signal was that 413!

recorded during the first 0.3 s of stimulation, with a background signal from the last 0.3 s of 414!

stimulation subtracted36,37. Dose response curves were fitted with a saturating exponential or a 415!

saturating-exponential-plus-linear function. The standard error associated with each 416!
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individual De determination was estimated by Monte Carlo simulation. Curve fitting, De 417!

determination and Monte Carlo simulation were performed using version 4.31.9 of the 418!

Luminescence Analyst software38.  419!

 420!

It has been observed widely that the majority of quartz grains from unheated sedimentary 421!

deposits do not yield a measureable OSL signal39-41 or display luminescence characteristics 422!

which indicate that they are unsuitable for age determination. Consequently, single-grain 423!

dating studies must adopt criteria for rejecting uninformative grains40. In this study, grains 424!

were rejected where one or more of the following conditions are met: (1) the OSL signal 425!

from the grain is too low to distinguish it from the variability in the background signal, 426!

determined using the “Tn signal more than 3 sigma above BG” rejection criterion in 427!

Luminescence Analyst38; (2) the recycling ratio42 differs from unity by greater than two 428!

standard errors; (3) the IR-depletion ratio17 is greater than two standard errors below unity; 429!

(4) recuperation exceeds 5% of the natural signal and (5) the sensitivity-corrected natural 430!

luminescence intensity is greater than the saturation intensity of the measured growth curve 431!

(termed “oversaturation” in Supplementary Table 15). In addition, grains were rejected where 432!

their measured De was within measurement uncertainty of 0 Gy at 2σ. This last criterion 433!

excludes intruded modern grains, and has been found necessary for the analysis of samples 434!

from similar contexts elsewhere in the Nefud Desert43. These rejection criteria were applied 435!

in order, and only the first cause of rejection is recorded in Supplementary Table 15. Of the 436!

17,900 grains measured, only 265 displayed acceptable luminescence properties, a yield of 437!

1.5%. The majority of grains (94%) were rejected due to low OSL signal intensity. Despite 438!

rigorous attempts to remove feldspar from the quartz fraction, fewer grains were accepted 439!

than failed the IR-depletion ratio criterion. This phenomenon has been observed in other 440!

single-grain studies on Nefud “quartz” e.g Petraglia and colleagues43.  441!
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  442!

To determine the age of a sample from a single-grain dataset it is necessary to calculate a 443!

single value for the burial dose (Db). Since the OSL samples presented here were taken from 444!

aeolian sand where complete resetting of the OSL signal prior to deposition may be assumed, 445!

and the small number of intruded grains were rejected prior to analysis, Db was calculated for 446!

all samples using the central age model (CAM)44. Overdispersion (OD) values for the Al 447!

Wusta samples ranged from 16 ±3% to 26 ±3% (PD17 and PD40 respectively), which is 448!

consistent with values reported from well-bleached undisturbed sediments33,45,46, supporting 449!

the use of the CAM to derive estimates of Db. Equivalent dose distributions for each sample 450!

are presented in Supplementary Figure 10. 451!

 452!

3.3 Environmental dose rate calculations 453!

For HF acid etched sand-sized quartz grains, the environmental dose rate consists of external 454!

beta, gamma and cosmic ray components. Beta dose rates were measured using a Risø GM-455!

25-5 low-level beta counting system47 using MgO and Volkagem loess48 standards, while 456!

gamma dose rates were measured using an EG&G Ortec digiDart-LF gamma-spectrometer 457!

using the “threshold” method. Dose rates were corrected for the effects of HF etching49, grain 458!

size50 and a water content of 5 ± 2.5%. The 2σ uncertainty on water content encompasses 459!

completely dry conditions (0%) and saturation for 25% of the burial period (10%), 460!

representing the full range of reasonable mean water content scenarios of a freely draining 461!

aeolian sand. Cosmic ray dose rates were calculated using site location (27.4°N, 39.4°E, 925 462!

m elevation) and present day sediment burial depths51. For samples other than PD40, the 463!

overburden was assumed to consist of 40 cm of sand (the target sampling depth below the 464!

base of the marl) containing 5% water by mass (assumed bulk density 1.74 g/cm3), with the 465!

remainder of the overburden depth being carbonates also containing 5% water by mass 466!
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(measured bulk density 1.36 g/cm3). For PD40, the entire overburden was assumed to be sand 467!

with an assumed bulk density of 1.74 g/cm3. Using these assumptions, cosmic rays contribute 468!

between 33 % (PD15) and 44% (PD40) of the total calculated dose rate, meaning that 469!

accurate estimation of the cosmic ray dose rate is more important for these samples than is 470!

normally the case. Therefore, the assumptions regarding burial depth require detailed 471!

consideration. Firstly, it was assumed that Unit 2 was deposited instantaneously above PD15-472!

17 and PD41, while the full depth of Unit 3a was deposited instantaneously above PD40. 473!

This assumption allows the cosmic dose rate to be regarded as constant throughout the 474!

sample’s burial period. For Unit 2, this assumption must approximate reality since the OSL 475!

ages for samples below Unit 2 are indistinguishable from those above. For unit 3 geologically 476!

instantaneous deposition cannot be demonstrated, but seems likely based on the interpretation 477!

that this deposit represents the encroachment of fluvial sedimentation during the final drying 478!

of Al Wusta lake (SI Section 5). Uncertainties on the cosmic ray dose rate were set at ±10%. 479!

Assuming that the overlying sediments were deposited rapidly, mean overburden during a 480!

sample’s burial period is unlikely to have been lower than that in the present day. 481!

Consequently, cosmic ray dose rates calculated as described above are either accurate or 482!

overestimates of mean burial dose rates. Cosmic ray dose rate overestimation will occur 483!

where appreciable reduction in the depth of overlying sediments has occurred since burial. In 484!

the case of samples overlain by carbonate beds (all except PD40), the cohesive nature of 485!

these sediments suggests that limited removal of overlying carbonates has occurred since 486!

burial. Conversely, the coarse surface lag (Unit 3b) above Unit 3a (Sample PD40) suggests 487!

that some overburden loss due to deflation has occurred (SI Section 5). It is difficult to 488!

estimate the quantity of material lost due to this process, but the sensitivity of the true cosmic 489!

ray dose rate to deflation may be estimated. In the present case, the lower (-10%) boundary of 490!

the estimated cosmic ray dose rate would be achieved by adding ~40 cm of sand (bulk 491!
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density 1.74 g/cm3) to the burial depth of the shallow samples (PD17 and 40), or ~70 cm to 492!

the burial depth of the deeper samples (PD15, 16, 41). However, this calculation represents 493!

the worst-case scenario, since it implies greater overburden throughout the burial period, 494!

followed by instantaneous removal of ~40/~70 cm of sand immediately prior to sampling. If 495!

a more realistic model, assuming continuous deflation throughout the burial period is used, 496!

then the lower boundary of the estimated cosmic ray dose rate is achieved after removal of 80 497!

cm of sand overlying the shallow samples, and 140 cm of sand overlying deeper samples. 498!

These considerations suggest that the ±10% (1!) uncertainties assumed for our cosmic ray 499!

dose rates encompass reasonable variations in overburden density over time. 500!

 501!

Dose rates and sample ages are presented in Supplementary tables 16 and 17 respectively. All 502!

analyses were carried out in the Royal Holloway Luminescence Laboratory by SA and R C-503!

W. 504!

 505!

 506!

 507!

 508!

 509!

 510!

 511!

 512!

 513!

 514!

 515!

 516!
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SI 4  Site chronology and Bayesian model 517!

The combination of different numerical dating methods enables us to provide ages for AW-1 518!

and associated sediment and fossils. The chronostratigraphic evidence available may be 519!

summarized as follows (Supplementary Figures 11 and 12): 520!

-! The human phalanx was found on the surface of Trench 1, on an exposure of Unit 3b. 521!

Direct U-series dating of AW-1 itself provides an age of 87.6 ± 2.5 ka (2σ confidence 522!

level). This result should be regarded as a minimum age for the fosil.. 523!

-! A hippopotamus tooth (WU1601) was collected from Trench 1 within Unit 3a, one 524!

metre away from AW-1 (Supplementary Figure 14). U-series dating of the dental 525!

tissues provides apparent ages of 83.5 ± 8.1 ka (enamel) and 65.0 ± 2.1 ka (dentine) 526!

(2σ). These minimum age results are consistent with that obtained for AW-1, 527!

suggesting that both fossils are coeval. 528!

-! Combined US-ESR dating of WU1601 yields an age of 103 +10/-9 ka (1σ), indicating 529!

a relatively early uranium uptake in dental tissues (p=-0.83 and -0.53 for enamel and 530!

dentine, respectively). This age estimate is compatible with the minimum age results 531!

derived from U-series dating of AW-1 and WU1601.  532!

-! The OSL sample collected from PD40 section within the same Unit 3a provides an age 533!

of 98.6 ± 7.0 ka (PD40). This estimate is consistent with the US-ESR age obtained for 534!

WU-1601 and the minimum age of ~88 ka obtained for AW-1. 535!

-! Three OSL samples collected from Unit 1 provides ages of 85.3 ± 5.6 ka (PD17), 92.2 536!

± 6.8 ka (PD41) and 92.0 ± 6.3 ka (PD15). These ages are internally consistent and a 537!

weighted mean age of 89.3+3.6 ka may be derived. Because Unit 1 is stratigraphically 538!

located below Unit 3a, these results provide a maximum possible age for Unit 3 and the 539!

associated fossils. 540!



! 23!

The combination of these data suggests a 2σ time interval of 85.1 to 96.5 ka for AW-1 (86.5-541!

92.9 ka at 1σ) based on the minimum and maximum age constraints derived from the direct U-542!

series age (87.6-2.5 = 85.1 ka) and the weighted mean OSL age of Unit 1 (89.3+7.2=96.5 ka). 543!

This age range agrees well with the US-ESR age result obtained for WU1601 collected close 544!

to AW-1 (Supplementary Figure 14). 545!

 546!

In order to further constrain the chronology of the deposits, all these data were incorporated 547!

into a Bayesian sequential phase model with phase 1 (underlying aeolian sand) corresponding 548!

to Unit 1 and Phase 2 (lake phase) to both Units 2 (no samples dated) and 3. We have not 549!

excluded shared systematic uncertainties (e.g. uncertainties shared between OSL ages) from 550!

the uncertainty term on individual ages. The exclusion of shared systematic uncertainties may 551!

be appropriate where: 1) a number of age estimates for a single event are being combined (e.g. 552!

10 OSL ages for a single stratum) or 2) where the principal aim is to determine the duration of 553!

time represented in a phase of activity/deposition. However, we use the Bayesian sequential 554!

phase model to determine the timing of deposition of the AW1 specimen. Here the uncertainties 555!

on individual ages (whether shared or not) do represent the uncertainty on the timing (but not, 556!

in the case of shared uncertainties, the duration) of deposition. With this type of model 557!

removing systematic uncertainties would give a false sense of precision to the depositional age 558!

for AW1. Modelled ages indicate that deposition of Unit 1 ceased 93.1 ± 2.6 ka (Phase 1, PD15, 559!

17, 41) and that Units 2 and 3 and all associated fossils were deposited between 92.2 ± 2.6 ka 560!

and 90.4 ± 3.9 ka (Phase 2, all other ages). The end date for phase 2 should be treated as a 561!

maximum value since no overlying material is present, precluding the possibility of further 562!

constraining the end of this phase. The timing of the lake phase is earlier than that indicated by 563!

other humidity records from the region. Given that the three samples from sands underlying 564!

the lake (arid phase indicators) are internally consistent, and coincide with the MIS 5c 565!
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insolation minimum, we propose that the subsequent lake phase correlates with the 566!

strengthened summer monsoon associated with the insolation peak at 84 ka (Fig. 6).  567!

 568!

 569!

 570!

 571!

 572!

 573!

 574!

 575!

 576!

 577!

 578!

 579!

 580!

 581!

 582!

 583!

 584!

 585!

 586!

 587!

 588!

 589!

 590!
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The code used to produce the Bayesian sequence model is as follows: 591!

Plot() 592!
 { 593!
  Sequence() 594!
  { 595!
   Boundary("Start 1"); 596!
   Phase("1") 597!
   { 598!
    Date("PD41",N(calBP(92200),6800)) 599!
    { 600!
    }; 601!
    Date("PD17",N(calBP(85300),5600)) 602!
    { 603!
    }; 604!
    Date("PD15",N(calBP(92000),6300)) 605!
    { 606!
    }; 607!
   }; 608!
   Boundary("End of sand"); 609!
   Boundary("Start of lake"); 610!
   Phase("2") 611!
   { 612!
    Date("PD40",N(calBP(98600),7000)) 613!
    { 614!
    }; 615!
    Before("i") 616!
    { 617!
     Date("AW-1",N(calBP(87600),1250)) 618!
     { 619!
     }; 620!
    }; 621!
    Before("ii") 622!
    { 623!
     Date("Hippo enamel",N(calBP(83500),4050)) 624!
     { 625!
     }; 626!
    }; 627!
    Before("iii") 628!
    { 629!
     Date("Hippo dentine",N(calBP(65000),1050)) 630!
     { 631!
     }; 632!
    }; 633!
    Date("US-ESR",N(calBP(103000),10000)) 634!
    { 635!
    }; 636!
   }; 637!
   Boundary("End of lake"); 638!
  }; 639!
 }; 640!
 641!

 642!
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SI 5. Stratigraphy, sedimentology and palaeoecology 643!

 644!

5.1 Results 645!

5.1.1 Sedimentology 646!

 647!

Unit 1 consists of loose, cross-bedded medium to coarse sands that contain evidence for 648!

bioturbation and iron-staining, this deposit underlies the sequence across the whole Al Wusta 649!

site (Supplementary Figures 13 and 14). The carbonate beds (Unit 2) exposed at Al Wusta are 650!

structureless and homogeneous, with some evidence for weak, horizontal laminations in 651!

PD16 sediments at depths between 70-40 cm. Carbonate content is high throughout all three 652!

sequences (typically >50%, Supplementary Figure 13), but the sediments have a low density 653!

typical of diatomite when dry. Shell fragments are rare but are present in the base of PD15 654!

and PD16 and towards the top of PD16. These fragments are obvious in thin section but not 655!

in hand specimen and any picked remains could not be identified to specific taxa. During 656!

sieving of samples for isotopic analysis the coarse residue, >63µm, was examined and 657!

ostracod fossils were not observable.  XRD whole rock analysis (that characterises the 658!

mineralogy of crystalline mineral composition, and consequently will not identify organics 659!

and non-crystalline biominerals, i.e. diatoms), indicate that the samples are dominated by 660!

calcite (>90%) with minor amounts of quartz (Supplementary Table 18 and Supplementary 661!

Figure15). Peaks that are attributable to evaporitic minerals such as gypsum and halite are 662!

present but the peak heights are so small that they are indistinguishable from background 663!

noise. Unit 3a consists of medium sands that are weakly horizontally laminated and contain 664!

fragments of eroded marls, occasional clasts and shells (Melanoides tuberculata and 665!

Planorbis sp). The upper part of Unit 3 (Unit 3b) is effectively desert pavement and has been 666!
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formed by the aeolian deflation of Unit 3a, concentrating clasts, shells, lithic and fossils at the 667!

land surface. The upper parts of Unit 3a contain calcite-cemented rhizolith that, as a result of 668!

progressive sediment deflation, now occur at the land surface as a cemented cap. 669!

 670!

5.1.2 Micromorphology 671!

 672!

All samples are dominated by homogeneous microsparite with some local zones of spar and 673!

micrite (Supplementary Figure 16a). Most sediments are massive with no clear sedimentary 674!

structures except for the sediments in PD16 (40-70 cm) which show evidence for finely 675!

laminated calcite, with laminations reflecting alternations between fine-grained micrite, 676!

coarser microspar and organics (Supplementary Figure 16b). Towards the top of PD17 677!

laminations of allogenic quartz grains occur but these are infrequent (30-40 cm). Where 678!

quartz grains occur, their surfaces show signs of etching and replacement with calcite.  679!

 680!

Organic remains are present in either an amorphous form or showing clear signs of cellular 681!

preservation. Diatoms and sponge spicules are visible in many slides (Supplementary Figure 682!

16c) and the latter are typically most abundant at the sample levels with the lowest % 683!

carbonate values. Iron staining occurs towards the top of PD15 (40-50 cm) and towards the 684!

base of PD16 (0-10 cm). There is no evidence for neomorphism and negligible evidence for 685!

pore-infilling of secondary cement. 686!

 687!

5.1.3 δ18O and δ13C analysis 688!

 689!

The δ18O and δ13C values of the sub-samples from the four sampling locations (PD15, 16, 17 690!

and 40) are shown in Supplementary Figure 17 Data from all four sections show very similar 691!
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δ18O values), although there is a significant scatter in each dataset. Greater variation occurs 692!

within the mean δ13C values, although the standard deviations of each dataset are again large. 693!

Although the dataset from each sampling locality is small PD15 (n = 8), PD 16 (n = 15), 694!

PD17 (n = 7) and PD40 (n = 12) it is sufficient to show the following patterns: 1) there is no 695!

co-variance in δ18O and δ13C values at any site or within the whole dataset level (r2 ca 0.2) 696!

and 2) there is no consistent pattern of variation upwards through the profiles. With regard to 697!

the second point, while there is a clear trend at site PD40 of increasingly positive values 698!

upwards through the profile the reverse is true of PD16. Interpretation of these conflicting 699!

signals is problematic because it is unclear whether the deposits in each sequence are 700!

absolutely contemporaneous.  One sample of calcite rhizolith was analysed from the calcrete 701!

capping PD40. This sample has the highest δ18O value of the dataset, but it is the δ13C value 702!

that is most significant as the high value (-1.12‰) implies that the vegetation that became 703!

established after the lake basin infilled/desiccated was a C4 grassland. 704!

 705!

5.1.4 Diatoms 706!

 707!

The diatom flora at PD15 and PD16 are shown in Supplementary Figures 18 and 19. Both 708!

sites show very similar species assemblages. The diagrams are divided into statistically 709!

significant zones based on a comparison with the broken-stick model using the program 710!

BSTICK version 152. The species diagrams of each site can be divided into three statistically 711!

significant zones, the main characteristics of which are outlined below, along with the main 712!

environmental implications of these assemblages: 713!

 714!

PD15 715!

Zone I  716!
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This zone comprises planktonic species (Lindavia rossi, Cyclotella krammeri and Lindavia 717!

ocellata) which is illustrated by the high planktonic: benthic ratio. The CA and DCCA axis 1 718!

scores decrease slightly in this zone. The log concentration, however, increases in this section 719!

meanwhile there is a minor decrease in the F index.  720!

 721!

Zone II  722!

This section reflects a change in species from mainly planktonic taxa to an increase in benthic 723!

taxa (Cymbella affinis and Nitzschia angustata) and periphytic (Staurosirella lapponica and 724!

Ulnaria ulna (agg.)). The increase in benthic and periphytic taxa is notable in the habitat 725!

composition diagram. The CA and DCCA axis 1 sample scores both decline considerably. 726!

There is also a decrease in the log concentration and the F index remains low.  727!

 728!

Zone III  729!

Aulacoseira italica and Aulacoseira granulata are the dominant taxa of this zone. The sample 730!

at 40 cm does not contain any benthic taxa therefore the planktonic: benthic ratio cannot be 731!

calculated for this level which is reflected in the habitat composition diagram. There is an 732!

increase in the CA axis 1 sample scores meanwhile a decrease in the DCCA axis 1 sample 733!

scores and log concentration occurs. The F index, which is a dissolution index, shows that the 734!

level of preservation is high for this sample in comparison to the rest of the profile.  735!

 736!

pH  737!

The assemblage reflects increasing pH as Lindavia ocellata usually occurs in mesotrophic 738!

lakes53, whereas Staurosirella lapponica, Stephanodiscus hantzschii, Aulacoseira granulata 739!

and Aulacoseira italica are indicative of eutrophic lakes54,55. Staurosirella lapponica and 740!
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Stephanodiscus hantzschii are good indicators of high alkalinity lakes meanwhile 741!

Aulacoseira granulata and Aulacoseira italica are characteristic of carbonate rich lakes.  742!

  743!

Lake depth  744!

 745!

The planktonic: benthic ratio and the habitat summary show that zone I is the deepest as 746!

planktonic (e.g. Lindavia rossi and Cyclotella krammeri) and tychoplanktonic (e.g. Lindavia 747!

ocellata) taxa increase to reach a peak at 0cm56,57.. The proportion of periphytic taxa increases 748!

throughout the zone II meanwhile benthic (e.g. Cymbella affinis and Nitzschia angustata) 749!

taxa reach a peak at 20 cm suggesting a decline in water depth which remains low for the 750!

remainder of the sequence. Aulacoseira italica and Aulacoseira granulata, which are 751!

periphytic and planktonic taxa respectively, dominate in zone III. Aulacoseira granulata 752!

suggests that lake levels were quite shallow558 up to a few metres and quite turbulent55,59. 753!

Aulacoseira italica accounts for 65% of the assemblage at 40 cm also suggesting shallower 754!

conditions as the habitat summary shows that this level comprises of periphytic and 755!

planktonic taxa with a small proportion of taxa with unknown ecology.  756!

 757!

Salinity  758!

There are very few saline tolerant species except for Epithemia argus which can be found in 759!

harsh conditions from saline to high alkaline, nutrient poor conditions. Due to its low 760!

abundance and the lack of other saline species salinity is not a major driver of this 761!

assemblage.        762!

 763!

Phosphorous  764!
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The taxa (Lindavia rossi, Cyclotella krammeri and Cyclotella ocellata) show increasing 765!

nutrient enrichment from a mesotrophic lake, which suggests moderate phosphorous 766!

concentration to eutrophic conditions with high phosphorous concentrations characterised by 767!

Stephanodiscus hantzschii, Aulacoseira granulata and Aulacoseira italica56-59. 768!

 769!

PD16 770!

Zone I  771!

Stephanodiscus and Aulacoseira are the dominant taxa in this zone with small increases in 772!

Fragilaria delicatissima, Staurosirella lapponica and Cymbella affinis. There is an increase 773!

in the planktonic: benthic ratio at the 10 cm which remains stable until zone II. The PCA and 774!

DCCA axis 1 scores diverge at 0 cm; however, both show little change meanwhile the log 775!

concentration and the F Index both increase until 10 cm before decreasing.  776!

 777!

Zone II  778!

There is a large decline in Aulacoseira italica in this section, while a decrease in the 779!

periphytic taxa occurs with a contemporaneous increase in benthic taxa. The PCA axis 1 780!

scores remain stable; meanwhile there is an increase in the DCCA axis 1 sample scores, 781!

fluctuations in the log concentration and an increase in preservation in this zone.  782!

 783!

Zone III  784!

Lindavia rossi, Cyclotella krammeri and Lindavia ocellata are the predominant taxa of this 785!

zone; however, Aulacoseira italica and Lindavia ocellata are the main taxa at 70 cm. The 786!

reduced abundance of benthic taxa is reflected by the increased planktonic: benthic ratio. The 787!

PCA and DCCA axis 1 sample scores also illustrate the change in composition. The log 788!

concentration and F Index both follow the same trend and decrease overall in this section.  789!
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pH  790!

 791!

The assemblage shows generally declining pH from Stephanodiscus hantzschii, 792!

Stephanodiscus parvus, Aulacoseira angustata, Staurosirella lapponica, Aulacoseira italica, 793!

Cymbella affinis, Lindavia ocellata, Cyclotellla krammeri and Lindavia rossi. The interaction 794!

of other variables, for examples, depth, light and phosphorous can also affect the abundance 795!

of different taxa56,61. The taxa present in zones I and II are associated with higher pH 796!

consistent with lower water levels which can concentrates the pH. In zone III the taxa 797!

changes and reflects lower pH conditions coherent with higher water levels which dilutes the 798!

pH level and other nutrients62,63.  799!

 800!

Lake depth  801!

The planktonic: benthic ratio and habitat summary shows that zone I and II consists of mainly 802!

benthic taxa and periphytic taxa suggesting lower water levels. Zone III comprises of mostly 803!

planktonic and tychoplanktonic species, indicating higher water levels. The PCA and DCCA 804!

axis 1 sample scores both show a big change in the composition and, over time, of the 805!

assemblage, reflecting the change in water level.  806!

 807!

Salinity  808!

Epithemia argus is the only saline species present in the diagram which indicates that 809!

assemblage is not significantly influenced by salinity.  810!

 811!

Phosphorous  812!

The response to nutrient enrichment, which is usually linked to phosphorous, follows the 813!

same trend as pH of decreasing nutrient status as reflected by the declining nutrient tolerant 814!
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taxa. Nutrient cycling within the lake is also affected by other variables (e.g. depth, light and 815!

pH) thus in zones I and II where there is lower water depth the phosphorous concentration 816!

increases enabling Stephanodiscus hantzschii and Aulacoseira granulata to thrive. 817!

Conversely in Zone III the assemblage consists of species with a low threshold for 818!

phosphorous which suggests a higher water level as the phosphorous becomes more 819!

dilute62,63. 820!

 821!

The overall change in the diatom assemblages can be assessed by the changes in the species 822!

composition of the sample (PCA or CA) and over time between the samples (DCCA). CA 823!

was used in PD15 which shows that there are substantial changes from 20 cm to the top of 824!

the core as the exploratory DCA axis 1 gradient length was ≥1.5 SD units.  The DCCA also 825!

shows a corresponding high species turnover which suggests a large change in species 826!

composition between samples which the decrease in the planktonic:benthic ratio reflects. 827!

PCA was used in PD16 (gradient length of exploratory DCA was ≤1.5 SD units) that shows 828!

there are smaller species compositional changes within this site than PD15.  The largest 829!

change occurs between 40-50 cm at PD15 which is simultaneous with a change in taxa 830!

reflected by the sudden increase in the DCCA axis 1 sample scores and the planktonic: 831!

benthic ratio. Although the changes appear larger in PD15 there are caveats to consider; the 832!

small sample size of 5 samples at this site may not be as representative of the environment as 833!

a larger dataset so the results may change if more samples were analysed at more frequent 834!

intervals.  The planktonic:benthic ratio of PD15 is smaller than that of PD16 suggesting less 835!

fluctuation in the water level.  836!

 837!

5.2 Interpretation 838!

 839!
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The proxy data outlined above allows the environment and hydrology of the Al Wusta lake 840!

beds to be reconstructed. This has implications for both the environment of the site itself but 841!

also for the regional palaeoclimate of the time. 842!

 843!

5.2.1 Environment and hydrology of the Al Wusta lake beds 844!

 845!

The loose and cross-bedded nature of the sands of Unit 1 are typical of aeolian dune sands 846!

and indicate that, prior to carbonate accumulation, the Al Wusta site was affected by active 847!

dune migration. Unit 2, characterised by massive carbonate beds and their microfabrics, is 848!

typical of the accumulation of authigenic carbonate marl on the bed of a lacustrine 849!

environment64,65. The precipitation of carbonate in the water column and its deposition out of 850!

suspension leads to the development of fine-grain marl beds. The structureless character of 851!

the beds is indicative of shallow water resulting in the sediment being oxidised and 852!

consequently bioturbated, or exposed to water column turbulence by surface winds. The 853!

preservation of laminations within PD16 most probably relates to short-term episodes of 854!

deeper water or more rapid rates of sedimentation. Despite being shallow there is no 855!

sedimentary evidence to indicate that the lacustrine environment underwent desiccation, as 856!

there is a complete absence of surface exposure features, and the character of the sediments 857!

are consistent throughout the entirety of the bed64. The shallow nature of the water is 858!

supported by the diatom assemblage which contains significant proportions of Aulacoseira 859!

italica and Aulacoseira granulata which indicates a few metres of water depth, with the latter 860!

being indicative of turbulent water conditions. While changes in the plantktonic/benthic ratio 861!

of the diatom assemblage suggest progressive changes in water level there is no evidence to 862!

indicate that the water level dropped to sub-aerially expose the lake beds. Consequently, the 863!

beds record the existence of a perennial water body. 864!
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 865!

The diatom flora is dominated by freshwater species with negligible evidence for salinity 866!

tolerant species. The lake was, therefore, a freshwater environment; an interpretation 867!

supported by the dominance of calcite in the lake XRD mineralogy traces and an absence of 868!

evaporitic minerals such as halite and gypsum.  869!

 870!

A lack of covariance in δ18O and δ13C values is often used to indicate whether a lake basin 871!

was part of an open system (i.e. a system with an active inflow and outflow to the basin) or 872!

not. Generally, the absence of co-variance is indicative of open-system lake waters that are 873!

regularly recharged; this has the effect of limiting any in-basin modification of the isotopic 874!

signal by processes such as evaporation66. Such a scenario could be true of the Al Wusta lake 875!

beds as the persistence of freshwater conditions (as evidenced by the diatom assemblages) 876!

and the lack of evaporative minerals would indicate that this system never underwent 877!

sufficient evaporation to produce brackish or saline conditions. However, two points are 878!

important to consider here. Firstly, a number of studies exist that report closed lake systems 879!

that do not show co-variance in their isotopic signals67. The exact cause of this is not always 880!

clear, however, it highlights the fact that the absence of δ18O and δ13C co-variance at Al 881!

Wusta should not be used as definitive evidence of this site recording an open lake system. 882!

Secondly, it is important to acknowledge that, even when there is no isotopic covariance, the 883!

δ18O of the water in open system lakes can still become enriched as a result of the 884!

evaporation of surface waters. However, as such systems have regular recharge this does not 885!

result in the waters becoming brackish or saline68. This is an important point as it is 886!

impossible to say whether minor or major evaporative enrichment in lake δ18O water values 887!

occurred at Al Wusta, but the diatom and mineralogical evidence shows that if such 888!

evaporation did occur, it was not sufficient to cause the waters to become brackish.  889!
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 890!

In summary, the proxy evidence indicates that Unit 2 represents the deposition of marl in a 891!

perennial water body that was entirely fresh. At this time the Al Wusta lake basin was an 892!

accessible and permanent freshwater resource for any early humans in the region. The pattern 893!

in the δ18O values seen at site PD40 (an increase in δ18O values upward through the 894!

sequence) could reflect a trend to greater aridity during the accumulation of this sequence 895!

(with increasing values reflecting greater evaporation and hence greater aridity). However, as 896!

the reverse is true for PD16 it is difficult to know how robust this interpretation is.  897!

 898!

The mean δ18O values of this sequence (-2.4 to -1.9‰) reflect both the δ18O value of the lake 899!

water and the temperature at which carbonate precipitation occurred66. Both of these are 900!

unknown, however, the nearest local isotopic datasetindicates that modern rainfall has a δ18O 901!

value of -4.0 to -4.5‰69. If such values occurred at the time of marl development at Al Wusta 902!

then it is likely that either the temperature of mineralisation was surprisingly low (i.e. a 903!

carbonate with a mean δ18O value of -2.2‰ precipitating from water with a mean δ18O value 904!

of -4.25‰ would form in isotopic equilibrium at a temperature of ca 11oC) or that significant 905!

isotopic enrichment, through evaporation, of the lake water had occurred. It is also important 906!

to consider, however, that the modern climate system that generates rainfall with a value of -907!

4.0 to -4.5‰ is a function of a westerly dominated system. As most humid phases in the 908!

Arabian Peninsula are suggested to relate to increased monsoon strength70, it is likely that the 909!

δ18O value of the rainfall during the formation of the lake system at Al Wusta was 910!

significantly different, and most likely heavier, than modern day values. A strong south to 911!

north gradient in the δ18O value of modern rainfall appears to exist in Arabia in the present 912!

day, with values in the southern part of this region being >0‰ in contrast with those in the 913!

north that are around 4‰71. Only a small northward shift in the air masses bringing rainfall 914!
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from a southerly source would, therefore, produce a significant increase in the "18O value of 915!

rainfall at Al Wusta. 916!

 917!

Consequently, it is currently unclear whether the marl δ18O value of ca -2.2‰ is a function of 918!

low water temperatures, isotopic enrichment, different air mass trajectory or a combination of 919!

all of these factors. Although many of the artefacts and fossils are found within Unit 3 it is 920!

important to stress that in situ artefacts are found with Unit 2 implying that humans were 921!

present in the landscape during the existence of the perennial freshwater lake body.   922!

 923!

The deposits of Unit 3a are interpreted as waterlain sands based on the presence of freshwater 924!

molluscs, the horizontal laminations and the incorporation of ripped up fragments of the 925!

underlying marl. The sands are interpreted as reflecting the encroachment of fluvial 926!

sedimentation during the final phase of basin infilling, either as a result of desiccation or 927!

simply due to the progressive reduction in available accommodation space. It is considered 928!

that the former is more likely as the inclusion of ripped up marl fragments would imply that 929!

the upper surface of Unit 2 had dried out and fragmented prior to the deposition of Unit 3a. 930!

The waterlain sands are capped by a horizon of calcified rhizoliths that represent the final 931!

transition from sub-aqueous to terrestrial conditions at the site. The coarse surface lag (Unit 932!

3b) reflects the winnowing of Unit 3a by aeolian processes and the formation of a desert 933!

pavement. The relatively resistant nature of the rhizolith horizon makes this layer resistant to 934!

aeolian erosion resulting in the occurrence of these features as a cemented cap at the top of 935!

the sequence.    936!

 937!

The majority of the excavated Al Wusta artefacts and fossils are found in Unit 3a. As the 938!

sediments of this unit contain evidence of eroded and reworked marl from Unit 2 it is 939!
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possible that the archaeological and faunal material has been derived from Unit 2 and 940!

reworked into the fluvial sands. If this is the case then it supports the idea that human 941!

occupation at the site is associated with the existence of a perennial, freshwater lake. If the 942!

artefacts and fossils are in situ then it implies that occupation of the site must have persisted 943!

after the contraction of the lake basin and the desiccation of the water body.    944!

 945!

5.2.2. Implications of the Al Wusta sequence for regional palaeoclimate 946!

 947!

The proxy record of the Al Wusta sequence records the existence of a perennial, freshwater 948!

lake system. Regarding human migration into this region, it is important to establish whether 949!

the existence of such a system can be explained by local hydrogeology or by increased 950!

regional moisture (i.e. the occurrence of a humid phase). It is argued here, despite evidence 951!

from only a single site being presented, that an increase in mean annual precipitation is 952!

required to explain the development of the Al Wusta lake basin. This suggestion is based 953!

upon three main observations. Firstly, the fact that Unit 2 comprises well-developed marl 954!

beds means that the lake waters must have been fed by groundwater recharge. The presence 955!

of sufficient dissolved Ca2+ in the lake waters to produce extensive marl precipitation requires 956!

migration of the waters through an aquifer. While much of the underlying geology is quartz 957!

rich sands, these are interbedded with units of carbonate rich marls that reflect phases of lake 958!

activity that pre-date the formation of the Al Wusta sequence. It is likely that these beds are 959!

the source of the dissolved minerals that fed into the Al Wusta basin. Secondly, no 960!

groundwater fed lake systems currently exist in the Nefud as the water table is too low. 961!

Surface water bodies are, therefore, restricted to highly ephemeral recharge playas. Thirdly, 962!

the underlying sediments and bedrock in this region are highly permeable aeolian sands; no 963!

local impermeable strata exist that could generate a locally perched water table that would 964!
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explain the existence of a lake system at this site. It is, therefore, proposed that the genesis of 965!

a groundwater fed lake system at this locality requires a regional increase in mean annual 966!

rainfall and the persistence of a humid phase in the Nefud Desert.  967!

 968!

5.2.3 Summary 969!

The Al Wusta sequence records the evolution of the site across an entire humid phase from 970!

aeolian deposition (Unit 1) to the development of lacustrine conditions (Unit 2) to the 971!

progressive drying out of the lake basin and the reversion to terrestrial conditions (Units 3a 972!

and b). In particular, the diverse range of proxies discussed here indicate that the Unit 2 973!

carbonate deposits at Al Wusta were deposited in a perennial shallow (a few metres of water 974!

depth) alkaline lake environment. This lake water body formed as a result of a humid phase 975!

and was fresh throughout its existence, making it a major resource for humans and fauna 976!

during this interval. 977!

 978!

 979!

 980!

 981!

 982!

 983!

 984!

 985!

 986!

 987!

 988!

 989!
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SI 6. Al Wusta vertebrate palaeontology, biogeography and taphonomy. 990!

 991!

The Al Wusta vertebrate fossil assemblage (Supplementary Table 19; Supplementary Figure 992!

19) is very fragmented, with few complete bones recovered. Fossil weathering is extensive 993!

and much of the cortical surfaces of the bones are missing, making skeletal element and 994!

taxonomic identification difficult. Of the 860 specimens, 305 are identifiable to skeletal 995!

element, with long bone shafts most common (Supplementary Table 20). Of the 12 distinct 996!

taxa identified, medium-sized bovids are most abundant, followed by small-sized bovids and 997!

Hippopotamus. Hippopotamus is represented solely by incisor and tusk fragments recovered 998!

in situ. Kobus sp. is represented by partial right M2 and M3 teeth (Supplementary Figure 20). 999!

The M3 has a distally positioned lingual accessory cusp, simple and flattened U-shaped 1000!

infundibulum, and a rounded buccally projecting hypoconulid. The occlusal length is within 1001!

the range of K. ellipsiprymnus; nevertheless, the specimen is too fragmented to allow positive 1002!

species identification. Rodentia is represented by two specimens, a maxilla fragment missing 1003!

all molars, and an almost complete cranium including part of the mandible. Despite the 1004!

completeness of this specimen, it is distorted, fragile and partially covered in matrix, making 1005!

a more precise taxonomic identification difficult. Two isolated reptile teeth belonging to a 1006!

species of Varanus were identified. The presence of Struthio is confirmed by numerous egg 1007!

shell fragments recovered in situ. Additionally, two smaller-bodied species of birds are 1008!

represented by incomplete long bone fragments.  1009!

 1010!

While Hippopotamus is restricted to Africa today, during the Pleistocene it was common 1011!

throughout parts of Europe and Asia72,73. Dispersals out of Africa led to localised speciation 1012!

events in Europe and the Levant74; however, there is some debate surrounding the precise 1013!

number of Hippopotamus species75,76. While it seems likely that the Al Wusta specimens 1014!
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represent an out of Africa dispersal, it should be noted that H. amphibius has been identified 1015!

at sites in Britain and Central Europe dated near the Middle to Late Pleistocene 1016!

transition72,77,78. Pelorovis is common in East Africa throughout the Pleistocene and is also 1017!

found at a few sites in North Africa but is absent from Europe and the Levant after the Early 1018!

Pleistocene79-81. Both Pelorovis spp. and Hippopotamus have been identified at other sites in 1019!

Saudi Arabia82,83 suggesting repeated dispersal events into the Arabian Peninsula during 1020!

periods of climate amelioration. Kobus typically inhabit flood-plains and grasslands 1021!

bordering water84. During the Middle and Late Pleistocene Kobus was restricted to Africa and 1022!

mostly south of the Maghreb. Notable northern occurrences were reported from Algeria and 1023!

Egypt, associated with the Last Interglacial85,86, but is unknown from the Levant during this 1024!

period. This may support a tendency toward longitudinal dispersals87, in this case eastward 1025!

dispersal out of Africa and into the Arabian Peninsula via the Southern Levant. Struthio is 1026!

common in Africa, but has also been identified by eggshell fragments on the Indian 1027!

subcontinent from as early as the Middle Miocene and as recently as 18 ka87,88. Struthio has 1028!

been found at several sites in the Levant, and was extant in Southwest Asia until the 20th 1029!

century. 1030!

 1031!

Weathering of many specimens, particularly those collected from the surface at the western 1032!

edge of the southern ridge at Al Wusta, suggests that they were likely exposed for a 1033!

significant period of time post-fossilisation, with abrasion and polishing attributable to 1034!

aeolian processes. Surface fossils included several refits recovered in close proximity, 1035!

suggesting limited post-exposure transport. It is likely that such specimens became 1036!

concentrated on the surface as a result of winnowing of the main fossiliferous layer. For these 1037!

specimens, post-mortem weathering (i.e. prior to fossilisation) was impossible to determine 1038!

due to the extensive fossil weathering of the cortical surfaces (i.e. following fossilization). 1039!
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Specimens collected in situ were typically better preserved and lacked the abrasion and 1040!

polishing common to the specimens from the surface. However, pre-depositional weathering 1041!

of these remains, on the other hand, was difficult to determine due to the fragmentary nature 1042!

of the fossils and the fact that many specimens remain encrusted in carbonate. Despite the 1043!

absence of body mammalian carnivores in the fossil assemblage, tooth pits potentially 1044!

attributable to hyenas, large canids, or large felids are evident on some bones (Supplementary 1045!

Figure 20H; Supplementary Table 21). Manganese staining is also present on numerous 1046!

specimens. Two small bone fragments may have been burnt: one is blackened and the other 1047!

one is dark brown in colour. However, their preservation is too poor to confidently rule out 1048!

diagenetic discolouration. No additional bone surface modifications were observed, although 1049!

this was not surprising considering that fine scale modifications are likely to have been 1050!

removed during weathering. 1051!

 1052!

Analysis of long bone circumference revealed a majority of type 1 shafts (75%), with type 2 1053!

and type 3 occurring much less frequently (12% and 13%, respectively). The type 3 and type 1054!

2 to type 1 index is 0.31, falling within the typical range identified for assemblages 1055!

accumulated by carnivores and hominins89. While extensive fossil weathering may also have 1056!

contributed to the production of type 1 shafts; nevertheless, there is evidence for large 1057!

carnivores and hominins at Al Wusta and it is likely that they contributed to the production of 1058!

type 1 shafts during prey processing and consumption. Furthermore, the under-representation 1059!

of epiphyses (N = 11) at Al Wusta supports carnivore ravaging of long bone ends90 although 1060!

this may also be an artefact of other non-biological preservation biases. Additional support 1061!

that bone breaking agents were, at least in part, responsible for the accumulation of bones is 1062!

the presence of green breaks (N = 12). Unfortunately, the assemblage is too poorly preserved 1063!

to determine a primary accumulator. 1064!
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SI 7. Al Wusta lithic technology. 1065!

7.1 Introduction 1066!

 1067!

The Al Wusta lithic (stone tool) assemblage consists of 380 artefacts, systematically collected 1068!

in transects and piece plotted from the southern end of the site in close proximity to the marl 1069!

beds and from excavations in 2016 and 2017 (Figure 1). Lithics continued to the north, but 1070!

were not included in the analysis here, which is limited to material south of the Holocene 1071!

playa (Figure 1).  The assemblage is Middle Palaeolithic in its characteristics, with a focus on 1072!

centripetal Levallois reduction, particularly of chert and quartzite. Retouched tools are 1073!

predominantly side-retouched flakes. The lithics, all from the same spatially restricted area, 1074!

also display similar raw materials, weathering and technology and are therefore treated here 1075!

as a single assemblage. The Al Wusta lithic assemblage is a valuable reference point for late 1076!

MIS 5 Arabia, and displays similar technological features to other contemporary Arabian 1077!

asssemblages43,91-93. 1078!

 1079!

The Al Wusta lithic assemblage can be divided into the following categories (% in brackets 1080!

shows % of total assemblage): 229 flakes (60.20%) [of which 36 are Levallois flakes, 1081!

9.47%], 55 chips and chunks (14.47%), 21 retouched flakes (5.52%), one hammerstone 1082!

(0.26%), and 74 cores (19.47%). Our aim here is to describe the basic technological 1083!

characteristics of this lithic assemblage, which we analysed using the methodology and 1084!

terminology described by Scerri and colleagues94-96 and Groucutt and colleagues93,97. 1085!

 1086!

The surface lithic assemblage was found closely associated with the marl deposits. Eleven 1087!

lithics were excavated at the site, in the upper part of the marl and in the overlying in situ 1088!

sand layer. The excavated material demonstrates similar characteristics to the larger sample 1089!
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from the surface, and includes similar raw material (focus on local lacustrine chert), three 1090!

Levallois cores, flakes with facetted platforms and a debordant flake.  The density of lithics 1091!

on the surface, together with the considerable variation in their size suggests that they are not 1092!

extensively redeposited, and we suggest that they were made by hominins beside the late MIS 1093!

5 lakeshore and then deposited into the lake by gravity and low energy movement. 1094!

 1095!

7.2 Raw materials 1096!

 1097!

In terms of raw material composition, the most common material consists of  1098!

a local lacustrine chert (65.09%), followed by quartzite (17.59%), ferruginous quartzite 1099!

(11.02%), quartz (5.25%), argillaceous sandstone (0.52%), and other sandstone (0.52%). This 1100!

raw material structure is unusual for the area. Al Wusta is the only identified Middle 1101!

Palaeolithic assemblage in the region not dominated by quartzite, generally highly 1102!

ferruginized91,92,97-99. It appears that suitable quartzite is rare in the environs of Al Wusta, with 1103!

our survey of the area showing an absence of large beds of ferruginous quartzite (Figure 5c). 1104!

Non-ferruginous forms of quartzite (e.g. Figure 5f) are relatively common in the assemblage, 1105!

and appear to occur as rounded pebbles of fluvial or conglomerate origin. Aside from chert, 1106!

other materials occur in low frequencies, such as quartz (Figure 5e), which occurs as small 1107!

pebbles in the bedrock of the area, and a rare type of rock which can be described as 1108!

argillaceous sandstone99 (Figure 5A). 1109!

 1110!

The dominant raw material consists of chert, which occurs with varying colours and textures. 1111!

The most common is brown in colour (e.g. Figure 5d). Our surveys of the area show that this 1112!

material has formed in lakebeds in the area, which form a raw material source when exposed 1113!

by subsequent erosion. We have conducted knapping experiments with this raw material, 1114!
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which shows that while variable, it is difficult material for knapping. The dominant chert at 1115!

Al Wusta seems to be a particular poor quality form. The chert clasts are relatively small 1116!

(always smaller than fist sized), have a very thick and undulating cortex, and frequently have 1117!

inclusions. The material is also extremely hard, and has to be struck with considerable force 1118!

to remove a flake. Despite these limitations, if knappers could access the inner part of the 1119!

nodules, the chert is fine grained and appears to have reasonable properties of conchoidal 1120!

fracture. 1121!

 1122!

7.3 Core technology 1123!

 1124!

The 74 residual Al Wusta cores are dominated by Levallois cores (54, 73%), with smaller 1125!

numbers of non-Levallois multiple platform cores (12, 15.6%), double platform 1126!

(bidirectional) cores (two, 2.7%), single platform cores (two, 2.7%), tested/minimally flaked 1127!

cores (two, 2.7%), one radial core (i.e. a core flaked centripetally, but which is neither 1128!

Levallois nor discoidal) (1.4%), and one core fragment (1.4%). It is clear, therefore, that 1129!

reduction was dominated by use of the Levallois technique. Other methods appear more ad 1130!

hoc in character. Multiple platform cores, for instance, tend to be small, having a mean 1131!

weight of 19.3 g if one large outlier weighing 349.9 g is removed. This compares to the 1132!

average weight for all cores of 34.9 g (with the same outlier also excluded). This suggests 1133!

that multiple platform core reduction, the main non-Levallois reduction method, was 1134!

employed on small clasts and/or on heavily reduced cores, which may have been Levallois 1135!

cores earlier in reduction. There is no evidence of façonnage reduction, nor of blade 1136!

production. 1137!

 1138!
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Of the 54 Levallois cores, 36 (66.7%) are preferential Levallois cores with centripetal 1139!

preparation (e.g. Supplementary Figure 21a,b,d) and 13 (24.1%) are recurrent centripetal 1140!

Levallois cores (e.g. Supplementary Figure 21C). The small number of pieces not in these 1141!

categories are indeterminate Levallois cores where overshot removals have removed the 1142!

whole debitage surface (9.2%). From the geometry of the cores and the morphology of 1143!

platform surface these are clearly centripetal Levallois cores, but it is not clear if their final 1144!

phase of reduction was recurrent or preferential in character. Finally, one example each of 1145!

recurrent unidirectional and recurrent bidirectional Levallois cores were identified. Striking 1146!

platforms are facetted on 87% of the Levallois cores. In most cases preferential scars on 1147!

Levallois cores demonstrate the product of parallel sided and sometimes oval Levallois 1148!

flakes, with a small number producing pointed products. 1149!

 1150!

Preferential and recurrent cores are similar in many features, for instance they have a similar 1151!

number of scars (average of 12.9 and 10.9 respectively) and a similar percentage of cortical 1152!

cover (23% and 27%). However, in terms of size recurrent cores are typically smaller (14.3 g, 1153!

σ 9.0) than preferential cores (36.9 g, σ 42.7). These data indicate that, as a general pattern 1154!

and perhaps within a situation of interchangeable reduction between Levallois methods, 1155!

larger cores were reduced preferentially and a recurrent method was used late in reduction. 1156!

The predominant focus on centripetal Levallois reduction demonstrates a level of 1157!

homogeneity to core reduction at the site.  1158!

 1159!

7.4 Debitage 1160!

Lithic debitage (n=284) at Al Wusta can be classified as complete flakes (185, 65.1%), 1161!

broken flakes (44, 15.5%) and chips/chunks (55, 19.4%). Our description here focusses on 1162!

complete flakes. 1163!
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 1164!

The average length (technological), width (mid-point), thickness (mid-point), and weight of 1165!

complete flakes are 29.8 mm (σ 11.9), 24.5 mm (σ 9.2), 8.46 mm (σ 4.2), and 13.1 g (σ 16.3) 1166!

respectively. To aid comparability, if we exclude flakes which are less than 20 mm in length, 1167!

these values become 32.25 mm (σ 11.3), 25.7 mm (σ 9.4), 9.3 mm (σ 4.3), and 14.6 (σ 16.9). 1168!

 1169!

Other basic features for complete flakes >20 mm in length include an average cortical cover 1170!

of 16.5% of the debitage surface, an average of 2.8 dorsal scars (σ 1.7), striking platforms are 1171!

prepared (facetted or dihedral) in 41.6% percent of cases and striking platforms have average 1172!

external platform values of 74.9° (σ 6.2). Dorsal scar patterns can be classified as: 31.5% 1173!

unidirectional, 2.4% unidirectional convergent, 1.6% perpendicular, 3.1% crossed, 11.8% 1174!

bidirectional, 13.4% subcentripetal, and 36.2% centripetal. 1175!

 1176!

Complete Al Wusta Levallois flakes (e.g. Supplementary Figure 21E,G-K) are on average 33 1177!

mm in length, 25.5 mm in width and 7.4 mm thick. They are generally broadly parallel sided 1178!

in shape. They most commonly (64.5%) have centripetal scar patterns, with a further 12.9% 1179!

having subcentripetal scar patterns. The remaining Levallois flakes are characterised by 1180!

unidirectional scar patterns (16.1%) and unidirectional convergent (6.5%). 74.2% of the Al 1181!

Wusta Levallois flakes have prepared platforms. 1182!

 1183!

Summarising these data, Al Wusta flakes are therefore typically small, quite commonly 1184!

cortical and with various scar patterns but particularly unidirectional and centripetal. 1185!

Levallois flakes are also small, and indicate a tendency to produce Levallois flakes by 1186!

centripetal preparation and hard hammer percussion from prepared platforms. These 1187!
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characteristics are consistent with the evidence from the cores in indicating that lithic 1188!

technology at Al Wusta is focussed on centripetal Levallois reduction.  1189!

 1190!

7.5 Retouched flakes 1191!

 1192!

A total of 21 retouched flakes were found at Al Wusta (15 complete). Three of these have 1193!

only distal retouch (e.g. Supplementary Figure 21m), seven are retouched along one lateral 1194!

(e.g. Supplementary Figure 21n), seven are retouched on both laterals (e.g. Supplementary 1195!

Figure 21l), and two are retouched on both laterals and distally (two more are fragments). 1196!

Where it can be determined, 87.5% of striking platforms are facetted or dihedral.  1197!

 1198!

Of the complete retouched pieces, they are mostly parallel sided and 66.7% have either 1199!

cortical surfaces or unidirectional scar patterns. Their average length, width, thickness and 1200!

weight are 33.6 mm (σ 11.5), 24.34 mm (σ 12.4), 10.7 mm (σ 2.4), and 15.9 g (σ 2.4). These 1201!

are similar values to the overall flake population. 1202!

 1203!

In most cases retouch is ‘regular’, while 33% of retouched flakes have notches as well as 1204!

regular retouch. In all but one case, the retouch is continuous rather than clustered, and 1205!

virtually all of the retouch is semi-abrupt. Retouch is always found on either the dorsal 1206!

surface or on both surfaces, and never exclusively on the ventral surface. Index of 1207!

Invasiveness (I of I)100, values range from 0.094 to 0.5, averaging at 0.25. Geometric Index of 1208!

Unifacial retouch (GIUR)101 values range from 0.45 to 0.89 with an average of 0.69. The 1209!

quite low values for I of I and high values for GIUR demonstrates that retouch was not 1210!

horizontally extensive across the face of the flakes, but was vertically quite intensive.  1211!

 1212!
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The retouched component of Al Wusta therefore shows a focus on typical side retouched 1213!

flakes (“scrapers”) with prepared platforms, as is commonly the case for Middle Palaeolithic 1214!

assemblages. 1215!

 1216!

7.6 Al Wusta lithic technology in comparative context 1217!

 1218!

The lithic assemblage of Al Wusta demonstrates a consistent approach to lithic technology, 1219!

focussed on centripetal Levallois technology. Here we will briefly consider this technology in 1220!

relation to sites elsewhere in Arabia and surrounding regions.  1221!

 1222!

The corpus of Arabian sites which can be related to later MIS 5 by chronometric dating 1223!

techniques is small, but increasing. These include the ~75 ka assemblage at JQ-1 at 1224!

Jubbah43,91, the ~ 100-60 ka assemblage from JSM-1 at Jubbah91,95, and the ~85 ka assemblage 1225!

from Mundafan Al Buhayrah in southwestern Arabia93. We emphasise the latter assemblage 1226!

from Mundafan as the key example, with both good chronometric age estimates and a large 1227!

and diagnostic lithic assemblage. Most Arabian Middle Palaeolithic assemblages remain 1228!

undated, or have produced contradictory age estimates, which mean little can be said on their 1229!

age with certainty. The available chronologically secure data indicate that mid to late MIS 5 1230!

sites demonstrate a focus on centripetal Levallois reduction, with both centripetally prepared 1231!

preferential and recurrent centripetal Levallois methods employed. In all cases they lack 1232!

bifacial façonnage technology and beaked (‘Nubian’) Levallois reduction. Levallois point 1233!

production only occurs at marginal levels. Differences at these sites tend to correlate with raw 1234!

material aspects. Both MDF-61 and JQ-1 appear to be located far (>10 km) from good raw 1235!

material sources, and in both cases demonstrate highly reduced assemblages, both in terms of 1236!

core reduction and high levels of retouch93,99. In terms of size aspects, lithics at Al Wusta are 1237!
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relatively small for MP/MSA assemblages. They are much smaller than many Arabian sites, 1238!

but also not as small as sites with highly reduced assemblages elsewhere in southwest Asia, 1239!

such as Tor Faraj in Jordan and Warwasi in Iran93,97,102. We associate these small size aspects 1240!

primarily with raw material factors at Al Wusta. The relatively high levels of retouch at Al 1241!

Wusta likewise likely correlate with the limitations of raw material in the area, encouraging 1242!

resharpening/edge rejuvenation of existing pieces. 1243!

 1244!

In areas to the north and west of Arabia a number of assemblages date to mid to late MIS 5 1245!

and share similar technological characteristics with Al Wusta. In the Levant this is most 1246!

clearly demonstrated by Qafzeh Cave, with its famous Homo sapiens fossils, dating to ~100-1247!

90 ka101. Moving into northeast Africa, sites such as 1017 and 34a have been attributed to 1248!

later MIS 5 (~85-80 ka) on both stratigraphic grounds and with preliminary chronometric age 1249!

estimates104-106. The technology of these sites again demonstrates a focus on centripetal 1250!

Levallois reduction. The Bir Tarfawi and Bir Sahara palaeolakes feature broadly similar 1251!

technology, and were repeatedly occupied during the wet phases of MIS 5107. In the Horn of 1252!

Africa key evidence comes from a series of dated assemblages in the Aduma area108. These 1253!

date to between ~100 and 80 thousand years ago, and as with sites such as Al Wusta 1254!

demonstrate a focus on the centripetal reduction of small Levallois cores, and are also 1255!

associated with Homo sapiens fossils. While these sites feature similar core reduction 1256!

methods, in contrast to, for example, the unidirectional focus of MIS 4-3 Neanderthal 1257!

assemblages in southwest Asia, further research is needed to understand similarities and 1258!

differences in areas such as retouched tool technology.  1259!

 1260!

While traditionally masked by variable analytical methodologies, differing regional 1261!

nomenclatures and a lack of knowledge on areas such as Arabia, we interpret these findings 1262!
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as indicating broad technological similarities across a large area in mid to late MIS 5110. 1263!

However, East African sites appear to feature more of a focus on retouched point production 1264!

(although this must be matched against these sites having large sample sizes compared to 1265!

assemblages in places such as Arabia). In terms of core reduction methods, however, 1266!

assemblages in East Africa, northeast Africa, the Levant and Arabia all appear to be similar 1267!

in mid to late MIS 5. In line with available fossil evidence, we note that this pattern appears 1268!

to be most ancient in East Africa108,109. In contrast to East Africa, areas such as the Nile 1269!

Valley, the Levant and Arabia demonstrate highly variable MP/MSA records. This pattern 1270!

suggests that at least in terms of visible (archaeologically preserved) aspects of material 1271!

culture, the earlier phases of dispersal into southwest Asia did not relate to radical 1272!

technological innovation. Phases of dispersal correlate with windows of climatic amelioration 1273!

in the Saharo-Arabian arid belt, while further research is needed to understand the nature of 1274!

demographic, social and behavioural changes in sub-Saharan Africa which might have 1275!

triggered dispersals. Beyond these broad observations of similarities in contemporaneous 1276!

similarities, detailed comparative studies of chronometrically constrained lithic assemblages 1277!

are needed to clarify patterns of similarities and differences in lithic assemblages.  1278!

 1279!

 1280!

 1281!

 1282!

 1283!

 1284!

 1285!
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Supplementary Table 1. Calliper measurements of AW-1 phalanx following measurement 1605!

scheme of Horwitz and colleagues111, proximal radio-ulnar maximum breadth following112. 1606!

 1607!

Measurement Measurement 

no.111 

Value 

(mm) 

Notes 

Maximum length 1 32.25  

Inter-articular length 2 30.21  

Midshaft dorso- 

palmar breadth 

3 6.25 Measured just distal to the pathology, 

which lies across midshaft (actual 

measurement location at <1mm distal to 

true midshaft). 

Midshaft radio-ulnar 

breadth 

4 8.53  

Proximal joint surface 

dorso-palmar height 

5 8.03 Proximal joint surface damaged, estimate. 

Proximal joint surface 

radio-ulnar breadth 

6 11.92  

Proximal radio-ulnar 

maximum breadth 

n/a 14.98  

Distal joint surface dorso-

palmar height 

7 5.25  

Distal joint surface radio-

ulnar breadth 

8 8.72 Distal joint surface incomplete, estimate. 

Midshaft circumference 9 14  

 1608!
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Supplementary Table 2. Comparative sample for linear metric analysis of Al Wusta-1 intermediate phalanx.  1609!

Taxon Specimen IP ray total sample Source of data 
A. afarensis AL 333x-18 IP2-4 n=5 measured directly from fossils by TLK 
 AL 333-32 IP2-4   
 AL 333-46 IP2-4   
 AL 333-88 IP2-4   
 AL 333-149 IP2-4   
A. africanus StW 331 IP2-4 n=1 measured directly from fossils by TLK 
A. sediba MH2 IP3, IP4 n=2 measured directly from fossils by TLK 
Swartkrans  
(A. robustus/early Homo) SKX 13476 IP2-4 n=6 measured directly from fossils by TLK 
 SKX 5019 IP2-4   
 SKX 5021 IP2-4   
 SKX 9449 IP2-4   
 SKX 36712 IP2-4   
 SKX 35439 IP2-4   
H. antecessor ATD6-28 IP3-4 n=2 published values from Lorenzo et al.112 

 ATD6-53 IP3-4   
H. naledi Hand 1 IP2, IP3, IP4 n=5 measured directly from fossils by TLK 
 UW 101-1646 IP3   
 UW 101-1647 IP4   
H. floresiensis LB6/9 IP? n=2 published values from Larson et al.113 

 LB1/48 IP?   

H. neanderthalensis Amud 1 IP2, IP3? 
min. n=12 
individuals measured directly from fossils by TLK 

   n=27 IPs  
 Kebara 2 IP2, IP3, IP4  measured directly from fossils by TLK 
 Tabun 1 IP2, IP4?  measured directly from fossils by TLK 

 
Moula Guercy M-G1-
154 IP2-4  published values from Mersey et al.114 

 Spy 430a IP3  published values from Semal et al.115 
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 Spy 390a IP3   
 Spy 484a IP4   
 Shanidar 3 IP3, IP4  published values from Trinkaus116 

 Shanidar 4 IP2, IP3, IP4   
 Shanidar 5 IP3, IP4   
 Shanidar 6 IP3   
 Krapina 205.1 IP3-4  published values from Trinkaus117 
 Krapina 205.2 IP3-4   
 Krapina 205.3 IP3-4   
 Krapina 205.4 IP3-4   
 Krapina 205.5 IP3-4   
 Krapina 205.6 IP3-4   
 Krapina 205.7 IP3-4   
 Krapina 205.8 IP3-4   
 Krapina 205.10 IP2   
 Krapina 205.12 IP3-4   
 Krapina 205.13 IP3-4   
 Krapina 205.14 IP2   
 Krapina 205.15 IP2   
 Krapina 205.17 IP2   
 Krapina 205.18 IP2   

early H. sapiens Dolni Vestonice 3 IP2-3 
n=17 
individuals published values from Sladek et al.118 

 Dolni Vestonice 13 IP2-3, IP4 n=33 IPs  
 Dolni Vestonice 14 IP3   
 Dolni Vestonice 15 IP2, IP3   
 Dolni Vestonice 16 IP2, IP3, IP4   
 Dolni Vestonice 34 IP2-3   
 Ohalo II H2 IP2, IP3, IP4  measured directly from fossils by TLK 
 Qafzeh 9 IP2  measured directly from fossils by TLK 
 Qafzeh 8 IP2, IP3, IP4  measured directly from fossils by TLK 
 Barma Grande 2 IP3, IP4  measured directly from fossils by NBS 
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 Arene Candide 2 IP2, IP3, IP4  measured directly from fossils by NBS 

 Sunghir 1 
IP2, IP3, IP4, 
IP5  published values in Trinkaus et al.119 

 Tianyuan 1 IP2?  published values in Shang and Trinkaus120 

 Skhul IV IP3, IP4, IP5  published values in McCown and Keith121 

 Pavlov 33 IP?  published values in Trinkaus et al.122 

 Caldeirao 9 IP2-4  published values in Trinkaus et al.123 

 
Cueva Victoria CV-
0* IP2  published values in Martinez-Navarro et al.1 

recent H. sapiens  IP2-4 
n=22 
individuals measured directly from specimens by TLK 

   n=67 IPs  
Pan (P. troglodytes & P. paniscus) IP2-5 n=8 individuals measured directly from specimens by TLK 
   n=34 IPs  
Gorlla (G. gorilla & G. beringei) IP2-5 n=8 individuals measured directly from specimens by TLK 
   n=34 IPs  
Cercopithecids  IP2-5 n=11 IPs measured directly from specimens by TLK 

 1610!

*The taxonomic association of this specimen with H. sapiens is questionable1,2 1611!

 1612!

 1613!

 1614!

 1615!

 1616!

 1617!

 1618!

 1619!
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Supplementary Table 3. Results from Mann-Whitney U pairwise comparisons with Bonferroni correction (α = 0.003) of all shape ratios 1620!

(i.e. divided by the total length of the phalanx). All breadth measurements in are radio-ulnar dimensions and all height measurements are 1621!

dorsopalmar dimensions. All significant pairwise comparisons are in bold text. 1622!

   Cercopiths Gorilla Pan Neandertal early H. sapiens H. sapiens 
base breadth above Cercopiths x 0.007 0.000 0.079 0.110 0.018 
prox. articular breadth below Gorilla 0.001 x 0.000 0.000 0.133 0.869 
  Pan 0.000 0.000 x 0.000 0.000 0.000 
  Neandertal 0.196 0.000 0.000 x 0.000 0.000 
  early H. sapiens 0.130 0.009 0.000 0.001 x 0.125 
  H. sapiens 0.033 0.022 0.000 0.000 0.368 x 
prox. shaft breadth above Cercopiths x 0.001 0.000 0.000 0.000 0.000 
midshaft breadth below Gorilla 0.526 x 0.000 0.180 0.000 0.481 
  Pan 0.000 0.000 x 0.123 0.011 0.000 
  Neandertal 0.886 0.418 0.000 x 0.011 0.404 
  early H. sapiens 0.088 0.052 0.000 0.009 x 0.000 
  H. sapiens 0.001 0.000 0.000 0.000 0.000 x 
midshaft height above Cercopiths x 0.000 0.000 0.866 0.014 0.000 
distal shaft breadth below Gorilla 0.032 x 0.000 0.000 0.001 0.000 
  Pan 0.000 0.000 x 0.000 0.000 0.000 
  Neandertal 0.048 0.356 0.076 x 0.005 0.000 
  early H. sapiens 0.000 0.000 0.002 0.003 x 0.359 
  H. sapiens 0.005 0.625 0.000 0.481 0.000 x 
distal shaft height above Cercopiths x 0.000 0.000 0.004 0.000 0.020 
prox. articular height below Gorilla 0.200 x 0.000 0.640 0.002 0.000 
  Pan 0.000 0.000 x 0.087 0.010 0.000 
  Neandertal 0.988 0.164 0.000 x 0.026 0.043 
  early H. sapiens 0.318 0.885 0.000 0.120 x 0.000 
  H. sapiens 0.217 0.674 0.000 0.083 0.876 x 

1623!
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Supplementary Table 4. Landmarks used in geometric morphometric analyses of Al 1624!

Wusta-1 phalanx and the comparative samples. 1625!

Landmark Description 

1 Mid-point of distal articulation (distal view, dorsal up) 

2 Furthest left point on distal head (dorsal view) 

3 Furthest right point on distal head (dorsal view) 

4 Furthest proximal point on midline of proximal articulation (proximal view, dorsal up) 

5 

Mid-point of ridge between two articulations on proximal face (proximal view, dorsal 

up) 

6 Furthest left point on proximal base (dorsal view) 

7 Furthest right point on proximal base (dorsal view) 

8 Deepest point on left proximal articulation (proximal view, dorsal up) 

9 Deepest point on right proximal articulation (proximal view, dorsal up) 

10 Centre of trochlea 

11 

Place where triangular raised region merges with central ridge on proximal palmar 

surface (palmar view) 

12 Most dorsal point on proximal base (dorsal view) 

13 Most palmar point of left proximal articulation (proximal view, dorsal up) 

14 Most palmar point of right proximal base (proximal view, dorsal up) 

15 Furthest point left of the distal trochlea (palmar view) 

16 Furthest left point of the proximal articular surface (proximal view, dorsal up) 

17 Furthest right point of the proximal articular surface (proximal view, dorsal up) 

18 

Most palmar point at the mid-line of the proximal articular surface (proximal view, 

dorsal up) 

 1626!
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Supplementary Table 5. Sample used in comparative primate geometric morphometric 1627!

analyses.  1628!

 1629!
Institutions: Duckworth: Duckworth Collection, University of Cambridge; NHM Vienna: Vienna Natural 1630!

History Museum; Uni. of Florence:  University of Florence; GAUG: Johann-Friedrich-Blumenbach-Institut für 1631!

Zoologie und Anthropologie der Georg-August-Universität Göttingen; Uni. of Kent: University of Kent; Tel 1632!

Aviv Uni.: Tel Aviv University; MPNBR: Museo Preistorico Nazionale dei Balzi Rossi, Italy; MAF: Museo 1633!

Archeologico del Finale, Italy; NHM: Natural History Museum, London; MRAC: Musée Royal de l Afrique 1634!

Centrale, Tervuren; MPI-EVA: Max Planck Institute, Leipzig; Powell Cotton: Powell Cotton Collection. 1635!

 1636!
Group Sample number Institution 

Al Wusta 1  
Colobus badius preussi total 7 Powell Cotton 

Gorilla gorilla total 20 Powell Cotton 
Mandrillus leucophaeus 4 Powell Cotton 

Mandrillus sphinx 2 Powell Cotton 
Mandrillus total 6  

Pan paniscus 4 MRAC 

Pan troglodytes 4 
Powell Cotton, MPI-

EVA 
Pan total 8  

Papio anubis neumanni total 4  
Krapina 17 NESPOS 

Regourdou 3 NESPOS 
Kebara 2 3 Tel Aviv Uni. 
Tabun C1 2 NHM 

Neanderthal total 25  
Qafzeh 4 Tel Aviv Uni. 
Ohalo 3 Tel Aviv Uni. 

Barma Grande 2 MPNBR 
Arene Candide 3 MAF 

Early H. sapiens total 12  
Australian 3 Duckworth 

Inuit 1 Duckworth 
Kerma 3 Duckworth 

Maiden Castle 3 Duckworth 
Egyptian Nubian 19 NHM Vienna 

Fuegian 3 Uni. of Florence 
Siracusian 5 Uni. of Florence 
German 13 GAUG 

Canterbury 11 Uni. of Kent 
Holocene H. sapiens total 61  

 1637!
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Supplementary Table 6. Procrustes distances from primate and hominin mean shapes 1638!

to Al Wusta-1. 1639!

 1640!

Mean Shape Distance to AW-1 

Holocene H. sapiens 0.080184 

Early H. sapiens 0.084209 

Mandrillus 0.093510 

Gorilla 0.101452 

Papio 0.106864 

H. neanderthalensis 0.119294 

Pan 0.119404 

Colobus 0.150987 

 1641!

 1642!

 1643!

 1644!

 1645!

 1646!

 1647!

 1648!

 1649!

 1650!

 1651!

 1652!

 1653!
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Supplementary Table 7. Details of the comparative sample of intermediate phalanges 1654!

from Neanderthals and Pleistocene and Holocene Homo sapiens used for geometric 1655!

morphometric analyses of known side and digit, and cross sectional geometric analyses.  1656!

Institutions: Duckworth: Duckworth Collection, University of Cambridge; NHM Vienna: Vienna Natural 1657!

History Museum; Uni of Florence:  University of Florence; GAUG: Johann-Friedrich-Blumenbach-Institut für 1658!

Zoologie und Anthropologie der Georg-August-Universität Göttingen; Uni of Kent: University of Kent; Tel 1659!

Aviv Uni: Tel Aviv University; MPNBR: Museo Preistorico Nazionale dei Balzi Rossi, Italy; MAF: Museo 1660!

Archeologico del Finale, Italy; NHM: Natural History Museum, London. 1661!

 1662!
Group 

  

Specimen/Group 

  

Institution 

  

Lefts (n) Rights (n) Sample 

total 2nd 3rd 4th 2nd 3rd 4th 

Holocene H. sapiens Australian Duckworth  1  1 1 2 5 

Holocene H. sapiens Kerma Duckworth 1 1    1 3 

Holocene H. sapiens Inuit Duckworth  1   1  2 

Holocene H. sapiens Maiden Castle Duckworth  1  1  1 3 

Holocene H. sapiens Egyptian 

Nubian 

 NHM Vienna 2  2 5 6 4 19 

Holocene H. sapiens Fuegian Uni of Florence  1  1 1 1  4 

Holocene H. sapiens Siracusian  Uni of Florence 2 1 1 2 1 2 9 

Holocene H. sapiens German GAUG  1 2 2 3 3 2 13 

Holocene H. sapiens Canterbury Uni of Kent  1 1 2 2 3 2 11 

Pleistocene H. sapiens Ohalo 2 Tel Aviv Uni 1  1    2 

Pleistocene H. sapiens Qafzeh 8  Tel Aviv Uni 1 1 1 1 1 1 6 

Pleistocene H. sapiens Qafzeh 9  Tel Aviv Uni 1   1 1  3 

Pleistocene H. sapiens Barma Grande 2  MPNBR  1 1  1 1 4 

Pleistocene H. sapiens Arene Candide 

2 

MAF  1 1 1 1 1 1 6 

Neanderthal Kebara 2 Tel Aviv Uni  1 1 1 1  1 5 

Neanderthal Tabun C1 NHM 1  1    2 

    Total  14 12 14 19 20 18 91 

 1663!

 1664!
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Supplementary Table 8. Procrustes Distances between Al Wusta-1 and other hominin 1665!

groups with sides pooled. 1666!

 1667!

  

Holocene H. 

sapiens 

Pleistocene H. 

sapiens Neanderthal 

AW-1 0.078 0.084 0.099 

 1668!

 1669!

 1670!

 1671!

 1672!

Supplementary Table 9. Procrustes distances between Al Wusta-1 and its nearest 1673!

neighbours with sides pooled. Specimen numbers refer to Figure 2. 1674!

 1675!

Nearest neighbour Side Ray 

Procrustes 

Distance 

1)! Maiden Castle EU.1.3.70_Sk20 Left 3rd 0.084 

2)! Egyptian NHMW K24_2  Right 3rd 0.061 

3)! Canterbury 

NGB_89_Sk15_1247  Left 3rd 0.072 

 1676!

 1677!

 1678!

 1679!

 1680!

 1681!
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Supplementary Table 10. Procrustes distances between Al Wusta-1 and comparative 1682!

groups and ray numbers across groups, analysing left and right hands separately. 1683!

Phalanx side Holocene H. 

sapiens 

Pleistocene H. 

sapiens Neanderthals 

Right  0.080 0.090 0.119 

Left 0.076 0.081 0.098 

 

  2nd Ray 3rd Ray 4th Ray 

Right  0.095 0.076 0.083 

Left  0.092 0.068 0.084 

 1684!

 1685!

 1686!

 1687!

 1688!

 1689!

Supplementary Table 11. Procrustes distances between Al Wusta-1 and its nearest 1690!

neighbours, analysing left and right hands separately. 1691!

Nearest neighbour Side Ray 

Procrustes 

Distance 

Egyptian NHMW K24 3 HP3MR Right 3rd 0.061 

Canterbury NGB 89 Sk15 1247 HP3ML Left 3rd 0.072 

 1692!

 1693!

 1694!

 1695!
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Supplementary Table 12. U-series results on Al Wusta-1. All errors are 2-σ. Individual 1696!
results do not contain errors of standard measurement (correlated errors), mean values 1697!
incorporate errors of standard. 1698!
 1699!

3675#1 

U 

(ppm) 

Th 

(ppb) 

U/T

h 

230Th/238

U 

230Th/238U 

error 

234U/238

U 

234U/238U 

error 

Age 

(ka) 

Age error 

(ka) 

1 49.99 16 307

2 

0.7293 0.0066 1.6887 0.0053 59.1 0.7 
2 48.60 11 425

8 

0.7310 0.0085 1.6817 0.0046 59.6 0.9 
3 46.10 14 339

4 

0.7537 0.0052 1.6798 0.0045 62.1 0.6 
4 43.85 16 270

7 

0.7724 0.0061 1.6899 0.0073 63.6 0.7 
5 34.79 226 154 0.7744 0.0063 1.6801 0.0048 64.3 0.7 
6 23.25 290 80 0.7950 0.0107 1.6829 0.0130 66.4 1.4 
7 19.12 166 115 0.7851 0.0094 1.6861 0.0051 65.2 1.1 
8 15.34 118 131 0.7791 0.0109 1.6895 0.0107 64.4 1.3 
9 14.22 106 135 0.7522 0.0088 1.6807 0.0092 61.9 1.0 
10 14.65 129 114 0.7574 0.0093 1.6882 0.0173 62.1 1.3 
11 15.29 100 152 0.7622 0.0084 1.6794 0.0101 63.1 1.0 
12 14.58 89 164 0.7559 0.0082 1.6895 0.0074 61.9 0.9 
13 12.02 81 148 0.7474 0.0089 1.6828 0.0099 61.3 1.1 
14 10.84 69 157 0.7516 0.0102 1.6798 0.0106 61.9 1.2 
15 11.08 54 207 0.7598 0.0103 1.6808 0.0118 62.7 1.3 
16 11.22 48 235 0.7585 0.0115 1.6772 0.0106 62.8 1.3 
17 11.20 47 240 0.7558 0.0111 1.6871 0.0104 62.0 1.3 
18 10.85 58 188 0.7606 0.0107 1.6933 0.0090 62.2 1.2 
19 10.08 48 211 0.7558 0.0135 1.6884 0.0104 61.9 1.5 
20 9.01 51 177 0.7572 0.0119 1.6952 0.0093 61.7 1.3 
21 7.81 70 111 0.7489 0.0133 1.6825 0.0098 61.5 1.5 
22 7.30 80 92 0.7311 0.0123 1.6858 0.0116 59.5 1.4 
23 6.57 72 91 0.7275 0.0124 1.6769 0.0088 59.5 1.4 
24 6.27 65 96 0.7251 0.0161 1.6833 0.0093 59.0 1.7 
25 6.19 67 92 0.7361 0.0120 1.6666 0.0159 60.9 1.5 
26 5.34 68 78 0.7338 0.0216 1.6691 0.0154 60.6 2.4 
27 5.33 61 87 0.7405 0.0132 1.6833 0.0150 60.6 1.6 
28 5.55 51 109 0.7351 0.0107 1.6971 0.0165 59.3 1.3 
29 5.63 46 124 0.7527 0.0136 1.6880 0.0109 61.6 1.5 
30 5.28 37 143 0.7333 0.0169 1.6821 0.0168 59.9 1.9 
MEAN VALUES 
1-30    0.7547 0.0129 1.6843 0.0152 62.0 1.6 

 1700!

3675#2 

U 

(ppm) 

Th 

(ppb) U/Th 

230Th/238

U 

230Th/238U 

error 

234U/238

U 

234U/238U 

error 

Age 

(ka) 

Age error 

(ka) 

1 57.79 16 3687 0.5955 0.0200 1.6802 0.0107 46.3 1.9 
2 57.29 9 6263 0.6742 0.0066 1.6675 0.0068 54.5 0.7 
3 53.84 7 8207 0.7077 0.0114 1.6700 0.0061 57.8 1.2 
4 47.64 5 9152 0.7705 0.0068 1.6852 0.0127 63.7 1.0 
5 45.61 5 9414 0.7969 0.0088 1.6784 0.0077 66.9 1.1 
6 42.56 4 1079

4 

0.7910 0.0122 1.6714 0.0172 66.6 1.7 
7 40.59 3 1267

2 

0.7948 0.0084 1.6845 0.0094 66.3 1.1 
8 38.07 2 1570

1 

0.7810 0.0075 1.6844 0.0088 64.8 0.9 
9 37.47 2 1760

7 

0.7814 0.0125 1.6748 0.0196 65.4 1.7 
10 37.71 2 1541

6 

0.7671 0.0079 1.6749 0.0174 63.8 1.2 
11 33.73 2 1364

1 

0.7640 0.0067 1.6755 0.0094 63.5 0.9 
12 30.04 3 1166

7 

0.7767 0.0112 1.6806 0.0097 64.6 1.3 
13 30.55 3 1109

9 

0.7883 0.0082 1.6952 0.0125 65.1 1.1 
14 29.63 3 1097

3 

0.7787 0.0085 1.6844 0.0086 64.6 1.0 
15 23.02 22 1060 0.7867 0.0099 1.6800 0.0076 65.7 1.2 
16 17.81 33 540 0.8032 0.0098 1.6839 0.0093 67.3 1.2 
17 14.64 22 660 0.8113 0.0091 1.6941 0.0118 67.6 1.2 
18 12.94 30 425 0.7987 0.0076 1.6783 0.0112 67.1 1.0 
19 10.54 39 272 0.7877 0.0106 1.6873 0.0097 65.4 1.3 
20 8.24 48 171 0.7746 0.0125 1.6877 0.0069 64.0 1.4 
21 6.20 61 102 0.7546 0.0143 1.6917 0.0102 61.6 1.6 
22 5.00 31 160 0.7692 0.0162 1.6939 0.0166 63.1 1.9 



 

! 77!

23 4.40 17 256 0.7668 0.0163 1.6926 0.0146 62.9 1.9 
24 3.90 12 319 0.7495 0.0165 1.6929 0.0151 61.0 1.9 
25 3.57 11 329 0.7547 0.0183 1.6891 0.0145 61.8 2.1 
26 2.97 10 296 0.7577 0.0177 1.6826 0.0146 62.4 2.0 
27 2.63 9 282 0.7240 0.0209 1.6951 0.0197 58.3 2.3 
28 2.34 8 299 0.6894 0.0234 1.6955 0.0151 54.8 2.4 
29 2.16 7 300 0.6274 0.0259 1.6883 0.0174 49.0 2.6 
30 1.85 6 331 0.6463 0.0358 1.6758 0.0322 51.3 3.7 
MEAN VALUES 
5-26    0.7837 0.0135 1.6814 0.0154 65.3 1.7 

 1701!

3675#3 

U 

(ppm) 

Th 

(ppb) U/Th 

230Th/238

U 

230Th/238U 

error 

234U/238

U 

234U/238U 

error 

Age 

(ka) 

Age error 

(ka) 

1 58.44 18 3325 0.6462 0.0124 1.6700 0.0073 51.6 1.3 
2 56.93 8 7353 0.6569 0.0049 1.6696 0.0153 52.6 0.8 
3 55.96 6 9673 0.6594 0.0066 1.6702 0.0096 52.9 0.8 
4 47.14 5 9675 0.6976 0.0087 1.6696 0.0108 56.7 1.0 
5 41.59 35 1201 0.7572 0.0132 1.6680 0.0139 63.1 1.6 
6 37.40 11 3388 0.8065 0.0132 1.6908 0.0192 67.3 1.8 
7 38.25 7 5596 0.7945 0.0094 1.6807 0.0074 66.5 1.1 
8 38.32 5 7199 0.7931 0.0102 1.6773 0.0157 66.5 1.4 
9 38.60 5 8198 0.8012 0.0106 1.6876 0.0156 66.9 1.4 
10 37.61 2 1640

3 

0.7850 0.0062 1.6900 0.0124 65.0 0.9 
11 35.79 3 1383

0 

0.7851 0.0086 1.6803 0.0087 65.5 1.0 
12 35.59 2 1452

9 

0.7800 0.0088 1.6783 0.0102 65.1 1.1 
13 36.60 2 1522

9 

0.7671 0.0057 1.6745 0.0088 63.8 0.8 
14 32.65 2 1478

9 

0.7566 0.0063 1.6792 0.0075 62.5 0.8 
15 30.15 3 1155

7 

0.7659 0.0103 1.6884 0.0125 63.0 1.3 
16 27.97 3 1025

9 

0.7703 0.0085 1.6835 0.0129 63.7 1.1 
17 25.75 4 6415 0.7698 0.0120 1.6816 0.0171 63.8 1.6 
18 24.69 3 8744 0.7781 0.0090 1.6691 0.0107 65.3 1.1 
19 22.23 3 8589 0.7997 0.0127 1.6868 0.0087 66.8 1.5 
20 19.33 3 6449 0.8015 0.0108 1.6820 0.0131 67.2 1.4 
21 14.70 10 1482 0.7975 0.0083 1.6827 0.0059 66.7 1.0 
22 8.99 19 471 0.7862 0.0162 1.6855 0.0115 65.3 1.9 
23 5.23 11 497 0.7627 0.0172 1.6863 0.0158 62.8 2.0 
24 5.05 6 827 0.7796 0.0105 1.7064 0.0110 63.5 1.2 
25 5.18 8 667 0.7626 0.0118 1.6977 0.0141 62.2 1.4 
26 5.43 8 653 0.7599 0.0196 1.6880 0.0132 62.4 2.2 
27 5.14 5 1090 0.7318 0.0161 1.6956 0.0179 59.1 1.9 
28 4.91 4 1297 0.7474 0.0144 1.6741 0.0193 61.7 1.8 
29 4.70 3 1664 0.7497 0.0153 1.6738 0.0139 62.0 1.8 
30 4.32 2 1859 0.7433 0.0144 1.6836 0.0160 60.8 1.7 
MEAN VALUES 
5-30    0.7821 0.0135 1.6827 0.0154 65.0 1.7 

 1702!

3675#4 

U 

(ppm) 

Th 

(ppb) U/Th 

230Th/238

U 

230Th/238U 

error 

234U/238

U 

234U/238U 

error 

Age 

(ka) 

Age error 

(ka) 

1 59.50 39 1524 0.6319 0.0102 1.6640 0.0054 50.4 1.0 
2 61.70 14 4513 0.6370 0.0064 1.6770 0.0311 50.4 1.3 
3 55.83 9 6523 0.6833 0.0087 1.6684 0.0049 55.3 0.9 
4 46.15 6 8275 0.7477 0.0088 1.6755 0.0096 61.7 1.1 
5 40.88 6 6811 0.8026 0.0100 1.6834 0.0081 67.3 1.2 
6 37.30 5 6899 0.8437 0.0085 1.6773 0.0067 72.3 1.1 
7 35.26 3 1049

2 

0.8453 0.0054 1.6879 0.0048 71.8 0.7 
8 36.35 3 1420

6 

0.8305 0.0077 1.6833 0.0067 70.4 1.0 
9 35.68 3 1253

8 

0.8276 0.0079 1.6798 0.0080 70.3 1.0 
10 33.76 2 1598

4 

0.8366 0.0057 1.6846 0.0066 71.0 0.8 
11 33.52 2 1678

1 

0.8263 0.0069 1.6815 0.0104 70.0 1.0 
12 32.93 2 1780

3 

0.8117 0.0072 1.6814 0.0039 68.4 0.8 
13 32.85 2 2134

7 

0.8043 0.0070 1.6824 0.0086 67.5 0.9 
14 31.36 2 1722

5 

0.7961 0.0074 1.6893 0.0078 66.2 0.9 
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15 29.38 2 1603

6 

0.7894 0.0074 1.6852 0.0093 65.7 1.0 
16 28.26 1 1957

1 

0.7801 0.0083 1.6719 0.0087 65.4 1.0 
17 26.76 2 1245

4 

0.7734 0.0080 1.6847 0.0066 64.0 0.9 
18 24.71 2 1468

5 

0.7655 0.0083 1.6735 0.0099 63.7 1.0 
19 23.88 2 1269

4 

0.7582 0.0097 1.6864 0.0156 62.3 1.3 
20 22.21 7 3326 0.7556 0.0095 1.6836 0.0122 62.1 1.2 
21 12.10 13 896 0.7489 0.0105 1.6782 0.0087 61.7 1.2 
22 8.43 8 1063 0.7651 0.0101 1.6788 0.0119 63.4 1.2 
23 7.16 5 1313 0.7567 0.0115 1.6846 0.0139 62.2 1.4 
24 6.07 7 897 0.7675 0.0137 1.6901 0.0140 63.1 1.6 
25 4.01 7 563 0.7555 0.0175 1.6847 0.0138 62.1 2.0 
26 3.58 4 845 0.7533 0.0170 1.6764 0.0173 62.3 2.0 
27 3.27 4 821 0.7348 0.0249 1.6763 0.0192 60.3 2.8 
28 2.97 3 1072 0.7227 0.0224 1.6744 0.0174 59.1 2.5 
29 2.59 2 1655 0.7398 0.0209 1.6773 0.0148 60.8 2.3 
30 2.21 2 1242 0.7129 0.0255 1.6696 0.0139 58.3 2.7 
MEAN VALUES 
5-30    0.8017 0.0137 1.6820 0.0152 67.2 1.7 

 1703!

3675#5 

U 

(ppm) 

Th 

(ppb) U/Th 

230Th/238

U 

230Th/238U 

error 

234U/238

U 

234U/238U 

error 

Age 

(ka) 

Age error 

(ka) 

1 74.45 19 3962 0.5473 0.0042 1.6540 0.0049 42.7 0.4 
2 68.19 8 8411 0.5574 0.0083 1.6487 0.0099 43.8 0.8 
3 56.73 6 9114 0.6294 0.0134 1.6630 0.0063 50.2 1.3 
4 47.30 6 7446 0.6985 0.0155 1.6621 0.0083 57.2 1.6 
5 42.32 4 1050

8 

0.7863 0.0120 1.6734 0.0149 66.0 1.6 
6 38.37 3 1119

7 

0.8324 0.0086 1.6852 0.0112 70.5 1.2 
7 35.55 2 1465

2 

0.8375 0.0101 1.6859 0.0067 71.0 1.2 
8 33.52 2 1625

9 

0.8548 0.0093 1.6904 0.0107 72.7 1.3 
9 33.30 3 1090

5 

0.8778 0.0072 1.6882 0.0107 75.5 1.1 
10 32.28 2 1476

6 

0.8746 0.0062 1.6817 0.0094 75.6 1.0 
11 33.75 2 1990

9 

0.8530 0.0068 1.6894 0.0165 72.6 1.3 
12 32.58 2 2007

5 

0.8570 0.0077 1.6872 0.0078 73.2 1.0 
13 30.24 1 2053

2 

0.8603 0.0106 1.6888 0.0099 73.5 1.4 
14 27.27 2 1585

1 

0.8684 0.0082 1.6860 0.0068 74.6 1.1 
15 25.94 2 1567

4 

0.8557 0.0082 1.6852 0.0112 73.2 1.2 
16 24.93 1 2556

1 

0.8451 0.0130 1.6847 0.0118 72.0 1.7 
17 24.91 1 2502

3 

0.8222 0.0100 1.6866 0.0063 69.3 1.2 
18 23.05 1 3626

2 

0.8358 0.0113 1.6888 0.0117 70.7 1.5 
19 21.56 1 2173

0 

0.8262 0.0080 1.6915 0.0091 69.4 1.0 
20 20.31 1 1552

6 

0.8322 0.0095 1.6917 0.0167 70.1 1.4 
21 19.72 1 2411

0 

0.8187 0.0146 1.7064 0.0278 67.7 2.2 
22 19.69 1 2830

0 

0.8080 0.0074 1.6861 0.0113 67.7 1.0 
23 18.82 1 3367

9 

0.8073 0.0079 1.6746 0.0132 68.3 1.2 
24 18.26 1 1927

7 

0.8028 0.0075 1.6792 0.0105 67.5 1.0 
25 17.53 1 2329

0 

0.8008 0.0102 1.6882 0.0064 66.8 1.2 
26 16.43 1 1982

9 

0.8079 0.0103 1.6917 0.0077 67.4 1.2 
27 14.39 1 1501

8 

0.8072 0.0094 1.6860 0.0132 67.6 1.3 
28 10.81 1 8682 0.8119 0.0101 1.6874 0.0129 68.1 1.3 
29 9.63 1 6644 0.8100 0.0107 1.6954 0.0113 67.4 1.3 
30 9.14 1 8014 0.8081 0.0137 1.6825 0.0139 67.9 1.7 
MEAN VALUES 
6-30    0.8392 0.0144 1.6874 0.0153 71.1 1.9 

 1704!

3675#6 

U 

(ppm) 

Th 

(ppb) U/Th 

230Th/238

U 

230Th/238U 

error 

234U/238

U 

234U/238U 

error 

Age 

(ka) 

Age error 

(ka) 

1 76.83 11 7262 0.4753 0.0142 1.6530 0.0051 36.2 1.3 
2 67.12 6 1086

9 

0.5164 0.0068 1.6578 0.0123 39.7 0.7 
3 63.03 7 9262 0.5360 0.0068 1.6572 0.0039 41.5 0.6 
4 53.40 6 9030 0.6315 0.0155 1.6663 0.0084 50.3 1.6 
5 47.14 4 1266

1 

0.7257 0.0141 1.6735 0.0110 59.5 1.6 
6 42.65 3 1293

8 

0.7690 0.0090 1.6757 0.0050 64.0 1.0 
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7 40.02 3 1340

6 

0.8297 0.0122 1.6803 0.0178 70.5 1.7 
8 38.80 2 1670

6 

0.8562 0.0078 1.6840 0.0100 73.3 1.1 
9 36.41 2 2159

8 

0.8708 0.0134 1.6868 0.0158 74.8 1.9 
10 35.03 2 1790

1 

0.8810 0.0087 1.6841 0.0106 76.2 1.2 
11 34.68 2 1756

5 

0.8966 0.0128 1.6925 0.0148 77.5 1.8 
12 33.32 2 1818

8 

0.9060 0.0089 1.6809 0.0091 79.4 1.3 
13 30.97 2 1775

2 

0.9079 0.0085 1.6863 0.0109 79.3 1.3 
14 28.12 2 1582

7 

0.8927 0.0089 1.6786 0.0083 78.0 1.2 
15 25.78 2 1359

4 

0.8953 0.0098 1.6778 0.0098 78.3 1.4 
16 23.78 1 1965

2 

0.8768 0.0109 1.6750 0.0130 76.3 1.6 
17 21.87 1 2389

1 

0.8852 0.0132 1.6860 0.0115 76.6 1.7 
18 20.16 1 2144

4 

0.8767 0.0125 1.6867 0.0105 75.5 1.6 
19 19.88 1 2676

5 

0.8574 0.0109 1.6881 0.0119 73.2 1.5 
20 18.92 1 2179

2 

0.8605 0.0097 1.6928 0.0105 73.2 1.3 
21 17.80 1 1407

7 

0.8454 0.0062 1.6846 0.0087 72.0 0.9 
22 16.52 1 1433

8 

0.8354 0.0126 1.6931 0.0158 70.4 1.7 
23 16.42 1 2041

9 

0.8389 0.0125 1.6902 0.0100 70.9 1.5 
24 13.49 1 1810

8 

0.8522 0.0131 1.6874 0.0123 72.6 1.7 
25 12.28 1 1640

2 

0.8742 0.0148 1.6841 0.0112 75.4 1.9 
26 12.87 1 1602

1 

0.8535 0.0161 1.7026 0.0164 71.9 2.1 
27 11.94 1 8285 0.8409 0.0082 1.6995 0.0103 70.6 1.1 
28 9.69 2 5389 0.8488 0.0108 1.6870 0.0103 72.2 1.4 
29 8.40 2 4912 0.8500 0.0137 1.6845 0.0140 72.5 1.8 
30 7.84 1 7437 0.8594 0.0136 1.6788 0.0122 74.0 1.8 
MEAN VALUES 
5-30    0.8739 0.0150 1.6859 0.0154 75.2 2.0 

 1705!

3675#7 

U 

(ppm) 

Th 

(ppb) U/Th 

230Th/238

U 

230Th/238U 

error 

234U/238

U 

234U/238U 

error 

Age 

(ka) 

Age error 

(ka) 

1 121.03 24 5024 0.3769 0.0033 1.6413 0.0025 28.0 0.3 
2 115.97 15 7838 0.3748 0.0040 1.6423 0.0033 27.8 0.3 
3 108.17 10 1073

7 

0.4193 0.0081 1.6487 0.0030 31.4 0.7 
4 86.57 9 9184 0.4735 0.0067 1.6484 0.0031 36.1 0.6 
5 71.74 10 6855 0.5251 0.0146 1.6540 0.0038 40.6 1.3 
6 57.44 13 4434 0.6336 0.0108 1.6660 0.0045 50.5 1.1 
7 50.64 91 554 0.6722 0.0060 1.6690 0.0056 54.2 0.6 
8 47.15 517 91 0.6413 0.0102 1.6627 0.0040 51.4 1.0 
9 43.06 307 140 0.6922 0.0108 1.6750 0.0103 55.9 1.2 
10 39.06 133 295 0.7215 0.0081 1.6787 0.0107 58.8 1.0 
11 36.80 67 552 0.7133 0.0051 1.6666 0.0068 58.5 0.6 
12 30.29 51 594 0.8452 0.0279 1.6882 0.0095 71.8 3.2 
13 28.00 31 895 0.9252 0.0086 1.6917 0.0068 81.0 1.2 
14 26.21 23 1162 0.9647 0.0104 1.7002 0.0094 85.3 1.5 
15 23.79 17 1392 0.9813 0.0111 1.6944 0.0076 87.9 1.6 
16 22.45 19 1199 0.9855 0.0112 1.6979 0.0067 88.1 1.5 
17 21.92 22 982 0.9827 0.0079 1.6945 0.0066 88.0 1.2 
18 21.01 17 1246 0.9752 0.0084 1.6878 0.0098 87.6 1.3 
19 19.25 22 866 0.9940 0.0088 1.6967 0.0067 89.3 1.3 
20 18.50 43 426 0.9641 0.0113 1.6841 0.0127 86.5 1.8 
21 17.60 22 801 0.9799 0.0115 1.6883 0.0095 88.2 1.7 
22 17.30 30 573 0.9743 0.0093 1.6958 0.0069 86.9 1.3 
23 17.07 23 738 0.9737 0.0103 1.6907 0.0068 87.2 1.4 
24 16.51 22 765 0.9703 0.0129 1.6869 0.0082 87.0 1.8 
25 15.15 14 1054 0.9627 0.0098 1.6961 0.0058 85.4 1.3 
26 13.61 8 1714 0.9810 0.0110 1.6945 0.0084 87.8 1.6 
27 12.93 10 1267 0.9869 0.0123 1.6882 0.0095 89.1 1.8 
28 11.39 19 614 0.9928 0.0109 1.6940 0.0073 89.4 1.5 
29 7.08 76 93 0.9768 0.0133 1.6930 0.0112 87.4 1.9 
30 5.92 53 112 0.9350 0.0144 1.6934 0.0148 82.1 2.1 
MEAN VALUES 
15-30    0.9778 0.0168 1.6923 0.0153 87.6 2.5 

 1706!

 1707!
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Supplementary Table 13. U-series results on sample WU1601. All errors are 2-σ.  1708!

3672 U (ppm) Th (ppb) U/Th 230Th/238U 230Th/238U error 234U/238U 234U/238U error Age (ka) Age error (ka) 

MEAN VALUES 
Enamel 

1-12 

0.83±0.28   0.8346 0.0533 1.5042 0.0329 83.5 8.1 

Dentine 

13-20 

109±6   0.7295 0.0173 1.5742 0.0124 65.0 2.1 

 1709!

 1710!

 1711!

 1712!

Supplementary Table 14. Combined US-ESR age results obtained for sample WU1601. 1713!

See Methods and Supplementary Information 2 for discussion. 1714!

 1715!

 1716!

 1717!

 1718!

 1719!

 1720!

 1721!

 1722!

 1723!

 1724!

Internal 

dose 

rate 

(µGy/a) 

Beta 

dose 

rate 

dentine 

(µGy/a) 

Beta 

dose rate 

sediment 

(µGy/a) 

Gamma 

dose 

rate 

(µGy/a) 

Cosmic 

dose 

rate 

(µGy/a) 

Total 

dose 

rate 

(µGy/a) 

Enamel 

thickness 

(µm) 

Removed 

surface 

layer(µm) 

on each 

side 

DE 

(Gy) 

p-parameter US-ESR 

age (ka) 

         enamel dentine  

241±75 260±48 4±0 180±10 254+25 939±93 3244±100 Ext.: 

176±50; 

Int.:181±50 

97.1±1.9 -0.83 -0.53 103+10/-9 
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Supplementary Table 15. The number of single grains which were measured, rejected 1725!

after application of the criteria outlined in Supplementary section 3.2, and accepted for 1726!

inclusion in the calculation of Db. Samples indicated (DR) represent dose recovery data.   1727!

Sample PD15 

(DR) 

PD17 

(DR) 

PD15 PD17 PD40 PD41 

Total number of grains measured   

 2500 2500 3600 3400 2800 3100 

Grains rejected for the following reasons   

Tn signal 

<3*background 

2358 2363 3373 3223 2606 2951 

Poor recycling ratio 11 25 34 21 16 30 

Depletion by IR 51 48 79 50 73 55 

Recuperation 36 29 58 53 28 17 

Oversaturation 3 1 0 5 12 7 

De < 2σ above 0 Gy 0 0 6 6 2 5 

Sum of rejected grains   

 2459 2466 3550 3358 2737 3065 

Acceptable individual De values   

 41 34 50 42 63 35 

 1728!

 1729!

 1730!

 1731!

 1732!

 1733!

 1734!

 1735!
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Supplementary Table 16. Sample depths, water content and dose rate for Al Wusta 1736!

samples. 1737!

Sample  

 

Depth 

(m) 

Moisture  

(%) 

Dose rate (Gy/ka) Total dose 

rate, (Gy/ka) Beta Gamma Cosmic 

PD15 0.95±0.10 5±2.5 0.15±0.01 0.27±0.02 0.209±0.021 0.62±0.03 

PD17 0.70±0.10 5±2.5 0.16±0.01 0.24±0.01 0.222±0.022 0.62±0.03 

PD40 0.65±0.10 5±2.5 0.10±0.01 0.18±0.01 0.219±0.022 0.50±0.03 

PD41 1.20±0.10 5±2.5 0.10±0.01 0.25±0.01 0.198±0.020 0.54±0.03 

 1738!

 1739!

 1740!

 1741!

 1742!

Supplementary Table 17. OSL Summary dating results and ages. Uncertainties in the age 1743!

estimates are based on the propagation, in quadrature, of errors associated with individual 1744!

errors for all measured quantities. In addition to uncertainties calculated from counting 1745!

statistics, errors due to (1) beta source calibration (3 %); (2) single-grain instrument 1746!

reproducibility (1.5 %); (3) dose rate conversion factors (3 %) and attenuation factors (3 %) 1747!

have been included. 1748!

 1749!

Sample 
 

Db calculation 
method  
(n) 

Db 
(Gy) 

OD 
(%) 

Total dose 
rate, 
Dr (Gy/ka) 

Age 
(ka) 

PD15 CAM (50) 57.4±3.0 22±4 0.62±0.03 92.0±6.3 
PD17 CAM (42) 53.0±2.5 16±3 0.62±0.03 85.3±5.6 
PD40 CAM (63) 49.6±2.5 26±3 0.50±0.03 98.6±7.0 
PD41 CAM (35) 50.2±2.8 20±4 0.54±0.03 92.2±6.8 

 1750!
 1751!
 1752!

 1753!

 1754!
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Supplementary Table 18. Quantification of bulk mineralogy from XRD data. Note that 1755!

in all cases calcite makes up at least 85% of the crystalline mineral fraction. Gypsum and 1756!

halite are below the detection limit of the instrumentation except in PD15-30. The absence of 1757!

any saline tolerant diatom species at this level makes it unlikely that halite was precipitating 1758!

in this system and it is more likely that this reflects aeolian dust blown onto the exposure. 1759!

There is no evidence for Halite in any of the thin sections. 1760!

 1761!

Sample ID Calcite % Quartz % Gypsum % Halite % 

PD15_10 

PD15_30 

PD15_40 

PD15_50 

93.9 

92.4 

96.7 

97.4 

3.5 

2 

1.7 

1.8 

1.6 

0.8 

0.7 

0.7 

1 

4.7 

0.9 

0.2 

PD16_30 

PD16_40 

PD16_80 

95.9 

96.6 

97.3 

2.2 

1.7 

1.4 

1.5 

1.4 

1.1 

0.3 

0.3 

0.2 

PD17_20 

PD17_30 

PD17_40 

93.8 

96.7 

87.3 

3.3 

1.8 

11 

1.3 

0.9 

0.7 

1.6 

0.6 

1 

 1762!

 1763!

 1764!

 1765!

 1766!

 1767!

 1768!

 1769!



 

! 84!

Supplementary Table 19. Taxonomy of Al Wusta vertebrate fossils. 1770!

 1771!

Class Order Family Taxon Common name 

Reptilia Squamata Varanidae Varanus Monitor lizard 

Aves   Aves gen. et sp. indet. (small) 

Aves gen et sp. indet (medium) 

Small bird 

Medium bird 

 Struthioniformes Struthionidae Struthio sp. Ostrich 

Mammalia Primates Hominidae Homo sapiens Human 

 Rodentia  Myomorpha gen. et sp. indet. Rodent 

 Artiodactyla  Hippopotamidae Hippopotamus sp. Hippopotamus 

  Bovidae cf. Pelorovis  

cf. Kobus sp. 

Large bovid gen. et sp. indet. 

Medium bovid gen. et sp. indet. 

Small bovid gen. et sp. indet. 

Pelorovis 

Kobus 

Large bovid 

Medium bovid 

Small bovid 

 1772!

 1773!

 1774!

 1775!

 1776!

 1777!

 1778!

 1779!

 1780!

 1781!

 1782!



 

! 85!

Supplementary Table 20. Number of Identified Specimens for small, medium and large-1783!

sized fossil vertebrates from Al Wusta. 1784!

 1785!

 1786!

 1787!

 1788!

 1789!

 1790!

Element Small Medium Large 

Horn core 2 1 - 

Crania 2 - - 

Mandible 2 4 - 

Isolated teeth 5 10 2 

Vertebrate 2 7 4 

Ribs 7 12 4 

Scapula - 1 - 

Pelvis - 2 1 

Humerus 2 3 2 

Femur - - - 

Radius - 2 - 

Tibia 2 - - 

Carpals/Tarsals 2 4 1 

Metapodials 1 - 2 

Phalanges 1 2 3 

Long bone shaft 11 46 7 



 

! 86!

Supplementary Table 21. Carnivore pit major and minor axes (mm) on fossil bones 1791!

from Al Wusta. 1792!

Specimen ID Major Axis (mm) Minor Axis (mm) 

200 7.7 6.3 

94 5.8 4.4 

300 3.0 3.0 

254 3.2 3.1 

288 4.2 3.0 

273 6.5 

3.3 

4.0 

1.7 

4.5 

2.7 

2.9 

1.7 

263 1.7 1.2 

291 7.1 3.4 

330 4.4 3.4 

293 4.5 3.0 

309 9.0 6.4 

253 9.0 8.0 

503 4.0 2.0 

516 6.0 6.0 

520 1.9 1.6 

534 2.2 1.6 

 1793!

 1794!

 1795!



!

!

 1796!

 1797!

 1798!

 1799!

1.! AW-1 geometric morphometric analysis (see main text for methods and 1800!

summary results) 1801!

 1802!
 1803!
 1804!
 1805!
 1806!
 1807!
 1808!
 1809!
 1810!
 1811!
 1812!
 1813!
 1814!
 1815!
 1816!
 1817!
 1818!
 1819!
 1820!
 1821!
 1822!
 1823!
 1824!
 1825!
 1826!
 1827!
 1828!
 1829!
 1830!
 1831!
 1832!
 1833!
 1834!
 1835!
 1836!
Supplementary Figure 1. Box-and-whisker plots of intermediate phalanx shape ratios of 1837!
Al Wusta 1 and a sample of primates, including hominins. Al Wusta-1 is highlighted in 1838!
red. 1839!



!

!

 1840!

 1841!
 1842!
 1843!
Supplementary Figure 2. Landmarks and wireframes used in geomorphomteric 1844!

analyses. A: Landmarks used to analyse phalanx shape using GMM. Landmarks numbered 1845!

as in Supplementary Table 4 (AW-1 shown); B: Wireframes composed of straight lines 1846!

connecting landmarks shown in A. Dorsal (left), lateral (middle) and proximal (right) views. 1847!

Dotted lines connect landmarks not visible when bone is present, some lines omitted in 1848!

proximal view for ease of visualisation. 1849!

 1850!



!

!

 1851!
 1852!

Supplementary Figure 3. Scatterplot of the first two principal component (PC) scores of 1853!

the geometric morphometric analysis of the Al Wusta-1 phalanx and a sample of 1854!

primates, including hominins. Non-human primates in red; Colobus: triangles, Pan: stars, 1855!

Mandrillus: squares, Gorilla: circles, Papio: diamonds. Hominins in blue; Neanderthals: 1856!

diamonds, Holocene H. sapiens: squares, early H. sapiens: triangles. AW-1 in black. Data 1857!

presented are the same as Figure 3, but filled convex hulls (for visualisation of data spread 1858!

only) show hominins (blue) and non-human primates (red) generic groups of non-human 1859!

primates and different groups of hominins. Circled shapes show means for groups (see 1860!

Supplementary Table 6). 1861!

 1862!



!

!

 1863!

   1864!

Supplementary Figure 4. Scatterplots of PC1 and PC2 scores from GMM analyses of 1865!

left (top) and right (bottom) intermediate phalanges from a sample of Neanderthals and 1866!

modern humans, and Al Wusta-1. Wireframes (see Supplementary Figure 2) show 1867!

configurations at extremes of PC axes in dorsal (left), proximal (middle) and sagittal (right) 1868!

views. Convex hulls added post-hoc for ease of visualisation. 1869!



!

!

 1870!
 1871!

Supplementary Figure 5. Scatterplots of cross-sectional geometric properties of Al 1872!

Wusta-1 and comparative modern human and Neanderthal intermediate manual 1873!

phalanges from rays 2-4. Plots against bone length: A = cortical area; B = total area; C = 1874!

percent cortical area; D = J. Plot against Imin: E = Imax. 1875!

 1876!



!

!

 1877!
 1878!
Supplementary Figure 6. AW-1 phalanx laser ablation sampling and data streams. A:  1879!
Image of AW-1 (dating code 3675) with location of the laser ablation analysis holes; B: Data 1880!
streams for 238U, 234U, 230Th and 232Th; C: 230Th/234U and 234U/238U activity ratios and calculated 1881!
closed system age estimates; D: Average age estimates for 30 bins of 33 cycles each; E: Plot 1882!
of apparent age vs elemental U/Th. 1883!
 1884!
 1885!
 1886!
 1887!
 1888!
 1889!



!

!

 1890!
 1891!
Supplementary Figure 7. Uranium concentrations and age estimates. A: Plot of all 1892!
average age estimates; B: U-concentrations (these are not corrected for diminishing U-yields 1893!
from deeper domains in the hole). Note the different aspect compared to A; C: Age vs U-1894!
concentration for outside (bin 1); D: Age vs U-concentration for the age plateaux (bins 16-1895!
30). 1896!
 1897!



!

!

 1898!

Supplementary Figure 8. Image of sample WU1601 with location of the laser ablation 1899!

analysis holes. 1900!

 1901!

 1902!

 1903!

 1904!



!

!

 1905!

Supplementary Figure 9. ESR Dose response curve (DRC) obtained for WU1601. Final 1906!

DE values were calculated for each sample by pooling all the ESR intensities derived from the 1907!

three repeated measurements in a single DRC. Fitting was performed with a SSE function 1908!

and data weighting by 1/I2.  1909!

 1910!

 1911!

 1912!

 1913!



!

!

 1914!
Supplementary Figure 10. OSL radial plots. Radial plots of the single-grain dose 1915!
distributions for Al Wusta samples. For panels a and b the grey band is centred on the dose 1916!
administered (49.8 Gy) in the dose recovery experiment. In panels c to f, the grey bar is 1917!
centered on Db determined with the Central Age Model. All points that lie within the grey 1918!
band are consistent (at 2 standard errors) with either the administered dose (a,b) or Db (c-f), 1919!
and are shown as closed symbols. Open symbols denote equivalent doses which are greater 1920!
than 2 standard errors from the administered dose (a,b) or Db (c-f).  1921!
 1922!



!

!

 1923!
 1924!
Supplementary Figure 11. Modelled ages for stratigraphic Units 1 (aeolian sand underlying 1925!
the site) and 3 (waterlain sands and associated fossils overlying lacustrine marls). Two 1926!
sequential phases were defined. Sample codes end with the age determination method in 1927!
parentheses. The ages WU1601 (US-dentine), WU1601 (US-enamel) and AW-1 (US) are 1928!
minimum age estimates, and the age model accounts for the fact that U-series ages are 1929!
conventionally reported with 2 s uncertainties whereas OSL and ESR ages are reported with 1930!
1 s uncertainties. A posteriori densities are shown in darker shade while the likelihoods are 1931!
shown in a lighter shade. Open circles underneath the a posteriori densities represent the 1932!
mean age estimate, with 1! uncertainty bars, while the lower bar represents the 95.4 % range.    1933!
  1934!



!

!

 1935!

 1936!
 1937!

Supplementary Figure 12. Overview of the available age constraints for AW-1. In red, 1938!
the modelled ages of the phase boundaries 1939!

 1940!
 1941!
 1942!
 1943!



!

!

 1944!
Supplementary Figure 13. Stratigraphic sections from Al Wusta. A: stratigraphic logs of 1945!
lacustrine marl deposits showing the main sedimentary units and stratigraphic variations in O 1946!
and C isotopes and % CaCO3. To avoid wasted space at the base of each stratigraphic section, 1947!
OSL ages are not presented at their true depth below the sand-marl interface. B: Diagram 1948!
summarising the difference in isotope values derived from aliquots of the same sample using 1949!
different preparation techniques (dashed line = carbon isotope values, solid line = oxygen 1950!
isotope values), although sieving of samples is often desirable the indurated nature of many 1951!
samples makes such an approach impractical. 1952!
 1953!



!

!

 1954!
 1955!
 1956!

 1957!
 1958!
Supplementary Figure 14. Composite stratigraphic diagram showing the relationship 1959!
between different sections across the site.  1960!



!

!

1961!

 1962!

Supplementary Figure 15. XRD traces from PD15-50 (top) and PD17-40 (bottom). 1963!

Calcite peaks (orange) dominate with secondary quartz peaks (blue). 1964!



!

!

 1965!

Supplementary Figure 16. Representative photo-micrographs of Al Wusta lake 1966!
sediments. A) Finely laminated microsparite with silt-sized quartz grains (Allogenic). B) 1967!
Massive microsparite with sand sized quartz grains (allogenic). C) freshwater sponge spicules 1968!
in a microsparite/sparite massive matrix. 1969!



!

!

 1970!
 1971!

 1972!

Supplementary Figure 17. Al Wusta carbonate isotopic data shown by sampling 1973!
location (a) and as a single dataset (b). The overall r2 value is 0.0521, while for each site 1974!
the value is PD15 = 0.121, PD17 = 0.001, PD16 = 0.132, PD40 = 0.072. The three outlying 1975!
samples are not shown but are included in the r2 calculation. 1976!



!

!

 1977!

Supplementary Figure 18. Summary diagram of Al Wusta Pit 1 PD 15 diatomite diatom 1978!

assemblage. All taxa with relative abundances of ≥3%. The diatoms are ordered according to 1979!

their weighted averaging distribution and divided up into assemblage zones derived from the 1980!

optimal-sum-of squares partitioning using the program ZONE52. The statistically significant 1981!

zones were deduced by comparison with the Broken-stick model using the program BSTICK 1982!

version 152. The planktonic: benthic ratio is shown with the habitat summary, Correspondence 1983!

Analysis and Detrended Canonical Correspondence Analyses axis 1 sample scores 1984!

(abbreviated to CA and DCCA respectively), log concentration, F-index which ranges from 0 1985!

(most dissolved) to 1 (most pristine). 1986!

 1987!



!

!

 1988!

Supplementary Figure 19. Summary diagram of Al Wusta Pit 2 PD 16 diatomite diatom 1989!

assemblage. All taxa with relative abundances of ≥3%. The diatoms are ordered according to 1990!

their weighted averaging distribution and divided up into assemblages zones derived from the 1991!

optimal-sum-of squares partitioning using the program ZONE52. The statistically significant 1992!

zones were deduced by comparison with the Broken-stick model using the program BSTICK 1993!

version 152. The planktonic: benthic ratio is shown with the habitat summary, Principal 1994!

Component Analysis and Detrended Canonical Correspondence Analyses axis 1 sample 1995!

scores (abbreviated to PCA and DCCA respectively), log concentration, F-index which 1996!

ranges from 0 (most dissolved) to 1 (most pristine). 1997!



!

!

 1998!
 1999!
Supplementary Figure 20. Al Wusta vertebrate palaeontology. A: cf. Kobus sp. lower 2000!
right M2-3; B: Pelorovis sp. mandibular fragment: C: Hippopotamus sp. ?upper canine 2001!
fragment; D: Hippopotamus sp. medial upper incisor; E: Varanus sp. isolated tooth; F: Aves 2002!
gen. et sp. indet. coracoid fragment; G: NISP for identified taxa. NISP is reported in 2003!
parentheses; H: Evidence of carnivore gnawing on a bone fragment. Black scale bar = 10mm. 2004!
White scale bar = 15mm. 2005!
 2006!
 2007!
 2008!
 2009!
 2010!
 2011!
 2012!
 2013!
 2014!
 2015!
 2016!
 2017!
 2018!
 2019!
 2020!



!

!

2021!
Supplementary Figure 21. Selected Al Wusta lithic artefacts. A,B,D: Preferential 2022!
Levallois cores with centripetal preparation, C: recurrent centripetal Levallois core, E,G-K: 2023!
Levallois flakes, F: broken Levallois point, L: double side retouched flake, M: end retouched 2024!
flake, N: side retouched flake. 2025!
 2026!

 2027!

 2028!

 2029!


